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Abstract
The foundation of statistical mechanics and the explanation of the success of its methods rest on

the fact that the theoretical values of physical quantities (phase averages) may be compared with the
results of experimental measurements (infinite time averages). In the Thirties, this problem, called the
ergodic problem, was dealt with by an ergodic theory that tried to resolve the problem by making
reference above all to considerations of a dynamic nature. In the present paper, this solution will be
analyzed first, highlighting the fact that its very general nature does not duly consider the specificities of
the systems of statistical mechanics. Second, A.I. Khinchin’s approach will be presented, that starting
with the more specific assumptions about the nature of systems, achieves an asymptotic version of the
result obtained with ergodic theory. Third, the statistical meaning of Khinchin’s approach will be
analyzed and a comparison between this and the point of view of ergodic theory is proposed. It will be
demonstrated that the difference consists principally of two different perspectives on the ergodic problem:
that of the ergodic theory puts the state of equilibrium at the center, while Khinchin’s attempts to
generalize the result to non-equilibrium states.
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THE FOUNDATIONAL ROLE OF ERGODIC THEORY

1. INTRODUCTION.

From his very first papers about the kinetic theory of gases, L. Boltzmann used a
special hypothesis according to which leaving a system in free evolution and waiting for
a sufficiently long time, the system will pass through all the states consistent with its
general conditions, namely with the given value of the total energy. This hypothesis,
later known as the ergodic hypothesis, can be found more or less explicitly in all of
Boltzmann’s work on this subject, but it seems that he did not assign it the same
meaning and perhaps even the same importance as we do today.1 Actually, the ergodic
hypothesis assumed a central role, above all due to J. Willard Gibbs’ work in 1902 and
to the use of the method of statistical ensembles. Indeed, it allowed us to connect in an
extremely simple and natural way a set theoretical quantity, such as the phase average
of a function, with a quantity defined on the system, that is, the infinite time average of
a physical quantity. Therefore, the ergodic hypothesis provides an immediate way to
give justification and physical meaning to the statistical ensembles method.
Furthermore, from the ergodic hypothesis, some notable consequences can be derived,
the most important of which are: 1) that the average time a system spends in a phase
region is proportional to the measure of the region itself and 2) that one and only one
probability distribution exists that is invariant with regard to the transformations taking
place on the system. With Gibbs’ work and the subsequent arrangement by P. and T.
Ehrenfest, the ergodic hypothesis acquired a central position in statistical mechanics.
But such centrality was not destined to last. In 1913, through independent means, M.
Plancherel and A. Rosenthal proved that a trajectory obeying the ergodic hypothesis and
occupying in the long run all the phase space, namely passing through any phase point,
cannot be a mechanical trajectory. A first attempt in order to avoid the problem was to
substitute the ‘strong’ ergodic hypothesis mentioned above with a weakened version,
the so–called quasi–ergodic hypothesis: in the long run, a system trajectory will pass as
near as is wanted to any point of the phase space, namely the trajectory will be dense in
the phase space. But this attempt proved useless for two main reasons (Sklar 1993, p.
161):

First there was the difficulty of proving of a given system that it was quasi–ergodic, a problem
that proved intractable. Second, it later became apparent, in the light of results obtained
through the ultimately successful approach to ergodic theory, that quasi–ergodicity even if
provable would be insufficient to gain the result one wanted. It could be shown, for example,
that there were quasi–ergodic systems that failed to demonstrate the equality of time average
with phase average that followed from the ergodic hypothesis and that grounded the other
desirable for which the hypothesis was first conjectured.

Thus, for a long time there was widespread skepticism about the ergodic
hypothesis and the possibility of statistical mechanics relying on it. At the beginning of
the 1930s, a completely new and original way was attempted by G. D. Birkhoff, B.
Koopman and J. von Neumann. They proposed the idea of proving the results
mentioned above (especially the equality of phase average with infinite time average,
from which the others derive) without using the ergodic hypothesis. The theory trying to
                                                  
1 A good reconstruction of the role of the ergodic hypothesis in Boltzmann’s and Maxwell’s work can be
found in Brush (1986, pp. 363–377) and in von Plato (1994, pp. 93–106). A very interesting thesis about
the original meaning and about the etymology of the term ‘ergodic’ is presented in Gallavotti 1982 and
Gallavotti 1999 (pp. 37–44).
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derive the equality of phase averages and infinite time averages using only the
dynamical properties of the system and some statistical assumptions is called ergodic
theory. Thus, the ergodic theory has little to do with the ergodic hypothesis.2 On the
contrary, it intends to characterize the ergodicity of a physical system by purely
dynamical means, without directly assuming the ergodic hypothesis. With the passage
of time, the ergodic theory was developed more explicitly as an abstract mathematical
theory and part of general dynamics, rather than as a strictly physical theory.

2. THE ERGODIC THEORY.

2.1 The ergodic problem and its solution.

A physical system may be represented as a set of physical states. Such a set is
called phase space. Knowingly statistical mechanics deals with systems constituted by a
very large number n of components (particles, molecules etc.), that is, with a high
number of degrees of freedom. The state of such a system is definable by means of (q1,
…, qn) generalized coordinates and (p1, …, p n) conjugated momenta. These phase
coordinates define a 2n–dimensional phase space Γ, in which a point P(q1, …, qn, p1, …,
pn) is said to be a representative point of the system and defines its state at a particular
time. The representative point evolves through a transformation of the coordinates
(usually Hamilton’s equations) describing a phase trajectory in the phase space.
However, since statistical mechanics usually deals with constant energy systems (so that
a degree of freedom is fixed) a (2n-1)-dimensional constant energy hyper-surface is
commonly used. In the following, we will use the hyper-surface Σ as a basic reference
space for any physical interpretation.

A physical quantity linked to the system may be expressed as a function of the
phase coordinates of the system. Consequently, for every empirically measured value of
a physical quantity should correspond an analogous value for an opportune phase
function on Σ. Statistical mechanics is a well-founded theory only (and to the extent
that) this correspondence exists and is empirically verifiable.

Nevertheless, it is clear that it is not possible to check an exact correspondence.
In fact, to compare the value of a physical quantity in a specific state with the value of
the corresponding phase function, we should calculate the value of the latter in a phase
point and this would require knowing all the phase coordinates (the values of the
positions and momenta for all the molecules of the gas). For this reason it is supposed
that the result of a physical measurement is not the exact value of the phase function,
but rather its average time value. This supposition is justified by the argument according
to which the temporal scale of a measurement is large with respect to the temporal scale
in which molecular changes take place.

But another problem arises. At first glance, it could happen that the average time
value of a phase function does not converge but assumes various values in different
points of the trajectory. This problem was overcome when Birkhoff showed that the
infinite limit of the time average of a phase function converges almost everywhere to a
constant value, where ‘almost everywhere’ means that the convergence is not valid only
for a set of points that have a set-theoretical measure equal to zero.

We have not gained much yet with this, since the calculation of the infinite time
average of a phase function presupposes knowledge of the entire trajectory of the
                                                  
2 For a brief historical account about ergodic theory, see von Plato (1987, pp. 389–394).
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representative point and therefore the integration of the phase coordinates. Since this
task is clearly out of our reach, an alternative calculation becomes necessary. In
particular, contrary to the infinite time average, the phase average (that is the average
value assumed by the function in the space Σ) is much easier to calculate. If therefore
the infinite time average of whatever function could be replaced by its phase average,
statistical mechanics would be completely founded. The ergodic problem consists
precisely of the justification of this replacement. It is clear that a solution to the ergodic
problem would be the demonstration that the constant value whose infinite time
averages converge is exactly the phase average. This is possible adding to Birkhoff’s
theorem the so-called hypothesis of metric transitivity (or indecomposability) (MT).

A set is said to be metrically transitive if it is not possible to decompose it into
two positive measure invariant subsets. A set is invariant if and only if it contains a
complete phase trajectory. Thus, the MT is the same as stating that it is not possible to
divide the set in subsets having positive measure, such as a trajectory that starts in one
of them remains there,3 or that the phase space is the smallest set containing the
complete phase trajectory of the system. It may be demonstrated that if the
transformation that the system undergoes preserves the Lebesgue measure, the MT is a
necessary and sufficient condition for equality between infinite time averages and phase
averages thus this is equivalent to the old ergodic hypothesis. This equivalence implies
that the MT essentially is a dynamical hypothesis (Sklar 1993, p. 166):

Notice also the way in which the Birkhoff result [..] avoids the necessity for anything like the
ergodic or quasi–ergodic hypothesis. It is now metric indecomposability that is the necessary
and sufficient condition for the equality ‘almost everywhere’ […] of the infinite time average
and the phase average. There is a condition equivalent to metric indecomposability, though,
that replaces the old ergodic and quasi–ergodic hypotheses, for metric indecomposability is
equivalent to the condition that given any set of positive measure in the phase space, the
trajectories from all but perhaps a set of measure zero of phase points intersect that set.

For this reason, the MT is also known as ‘ergodicity’. This concept can be
clarified relying on the distinction between global and local integrals of motion.
Generally speaking, an integral of motion is a phase function whose value does not
change along the phase path. Let us consider a system with n degrees of freedom
described by a hyper-surface Σ of constant energy: then we have 2n – 1 integrals of
motion. A certain integral I is called global if and only if it is constant all the time on a
given trajectory, while it is called local if and only if it is constant for a limited period
of time. Obviously, the energy is a global integral on Σ. Thus it can be said that MT is
equivalent to state that another global integral of motion does not exist on the system,
namely another phase function constant almost everywhere on the trajectory does not
exist (GIM). Let us prove that MT is equivalent to GIM.

a) If GIM then MT: let us assume ab absurdo that MT does not hold, then let us
prove that another phase function which has positive measure and is constant on the set
can be defined. Indeed, if MT does not hold, a decomposition of the space in two
positive measure sets V1 and V2 that are invariant can be found. Therefore, using the
indicator function, a new integral such as h(P) = 0 on V1 and h(P) = 1 on V2 can be
obtained thereby contradicting GIM.

b) If MT then GIM: let us suppose that a new global integral of motion g(P)
exists that assumes on the trajectories a value included within the continuous interval [a,

                                                  
3 Cf. Sklar (1993, pp. 164–165); this sense justifies the term ‘metric indecomposability’.
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b]. Thus it can be proved4 that a number α ∈ [a, b] exists such as makes it possible to
divide the space into two invariant portions, thus obtaining a contradiction with the MT
hypothesis.5

Thus, the validity of MT on the hyper-surface implies that the energy is the only
constant global integral on Σ , “so the condition of metric indecomposability is
essentially equivalent to the condition of there not being any neglected global constant
of motion that differs in its value on sets of trajectories of non–zero probability”.6

2.2 Troubles with ergodic theory.

Ergodic theory justifies the replacement of the infinite time averages with the
phase averages relying on the geometric properties of the phase space (invariance), on
the properties of transformations defined therein (measuring-preserving transformation)
and on a particular hypothesis (MT). In this way, this resolves the ergodic problem and
founds the correspondence between particular values of phase functions and the
experimental measurements of physical quantity. Before concentrating on specific
criticism of ergodic theory, it is opportune to point out some considerations on the
general meaning of the ergodic problem. As we have seen, this presupposes that the
outcomes of measurements may be compared to infinite time averages and that
convergence almost everywhere is an acceptable criterion, namely, in other words, that
zero measure sets are negligible. Criticism has been made about both of these
suppositions7.

As we have seen, the first supposition relies on the following argument: the
single act of measurement requires a certain time, which generally is very long in
comparison to the temporal scale of microscopic events. Therefore we can assume that
the result of a measurement of a quantity represents the average value of the quantity
itself over such a long time as to be considered infinite. However, some observations
speak against the plausibility of this argument.8

(1) There are cases in which the microscopic and macroscopic time scales are
not very different, for example when we evaluate the effect of the interaction among the
gas molecules and the walls of the container.

(2) If the measurement results really were infinite time averages, then we could
obtain results concerning quantities in equilibrium only. This means that we could not
measure either the change of quantities moving from a value of non-equilibrium to
equilibrium, or, for example, the fluctuation in the equilibrium position we find in many
physical phenomena, first among them in Brownian motion.

(3) If the conditions of the ergodic theory are accepted, ‘calibrating’ the initially
deviate measurements, as is usually done in physics, would become impossible.9

                                                  
4 Cf. Khinchin (1949, pp. 29–30).
5 This is intuitively clear if it is considered that any global integral reduces the space accessible to the
trajectories by one dimension; since the MT is the assumption according to which the hyper-surface
cannot be further reduced dimensionally, consequently there cannot be global integrals of motion
different from energy.
6 Cf. Sklar (1993, p. 166).
7 A summary of the critiques about these supposition and about the assumption that the real systems are
MT-ergodic can be found in Sklar (1993, pp. 175-188).
8 Cf. Sklar (1993, pp. 176–177) and Guttmann (1999, pp. 84–86); see also van Lith (2001).
9 Hopf tried to avoid some of these problems suggesting that even though measurement provides time
average values, in the ergodic theory identity is between phase average and average value deriving from
infinite single measures. However, even if this distinction is done, the result does not change, because
infinite single measures provide an infinite time average anyway.
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The second supposition means that zero measure sets have zero probability, but
this runs counter to the following considerations: the zero measure sets are not
necessarily empty. If we consider a space of dimension n, any of its subsets with
dimensions of less than n will have a zero measure relative to the defined measure
function on the initial space. Such a fact is quite notable for statistical mechanics, where
hyper-surfaces of constant energy that are spaces with minor dimensions of classical
phase space, are considered. In this sense, to give zero measure and hence zero
probability does not necessarily mean giving impossibility to certain sets.10

One argument that is often advanced in favor of the possibility of neglecting
zero measure sets is based on the realization that these do not seem to have any
‘interior’ points. This would make us think that zero measure sets are in some way
‘unstable’, namely a phase point passing by them would not stop long within them.11

Unfortunately, this topic has faced the opposition of Malament and Zabell, who said we
could construct sets without interior points, but to which we would prefer to give higher
probability than zero.12 An alternative was suggested by Malament and Zabell
themselves who proposed accepting a rather blurred property of continuity for
probability. According to this property, if set A is obtained from set B via a small
change, then the probabilities associated with the two sets will be almost equal. A
consequence of this property is actually neglecting the zero measure sets. However,
even by following Malament and Zabell’s indications, it is possible to build sets to
which zero probability would not be willingly given. Meanwhile, the chance of
neglecting the zero measure sets remains an assumption that depends on our definition
of the measure function.13

This criticism exhibits a common characteristic. The former maintain that the
equivalency between measurements and infinite time averages is problematic for
systems that find themselves in a state of non-equilibrium, the latter show that zero
measure sets are surely negligible only for stationary measures. The general thesis
supported is therefore that the foundation of statistical mechanics via the ergodic
problem is rigorously possible only for systems in a state of equilibrium. Now, since
equilibrium is a limit state of the evolution of systems, even a truly general solution to
the ergodic problem should exhibit the same ‘asymptotic’ characteristic by becoming
more and more rigorous as the system approaches equilibrium. It is clear that the
ergodic theory lacks this characteristic. In fact, the ergodic theory resolves the ergodic
problem basing itself on properties like the MT that are strictly true only for phase
spaces that represent systems in equilibrium. The conclusions of the ergodic theory are
not therefore subject to any asymptotic condition expressing that their plausibility
increases the more we are far from non-equilibrium state. This situation changes
radically with Khinchin’s approach to the ergodic problem.

                                                  
10 Note that the second presupposition means also that to the Lebesgue measure function, usually adopted
in statistical mechanics, a privileged role should be assigned. Haar (cf. Haar, 1933) showed how, at least
under some conditions, the Lebesgue measure is effectively the only invariant (cf. Guttmann 1999, pp.
134–150), but these conditions are far from representing all the physically interesting cases.
11 Such a conclusion relies on isomorphism that can be found between zero measure sets and first
category sets, a concept coming from topology, which are sets equivalent to a countable union of sets
lacking interior points. The idea is that if a set does not have interior points, then every state can be
approximate to the external neighborhood of the same set (cf. Guttmann 1999, p. 168 and Oxtoby 1980,
pp. 39–41).
12 Cf. Malament and Zabell (1980).
13 A further method consists of replacing zero measure sets, with first category sets, taking advantage of
the Erdös–Sierpinsky theorem and developing statistical mechanics from this on a merely topological
basis (cf. Guttmann 1999, pp. 151–189, Oxtoby 1980, pp. 74–81).
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3. KHINCHIN’S APPROACH TO THE ERGODIC PROBLEM.

3.1 Critiques to ergodic theory

In 1949 A. I. Khinchin proposed a new approach to the ergodic problem. His
point of view was explicitly critical of the ergodic theory and may be summed up as
follows: ergodic theory is too abstract and too general to treat systems of statistical
mechanics in a complete way and above all, has the typical set up of theories of
equilibrium. Let us see his critical remarks in detail.

First, ergodic theory was developed as a part of ‘general dynamics’ and thus is
applied to all dynamic systems, but does not contain anything specific for systems of
statistical mechanics: “in particular all these results pertain equally to the systems with
only few degrees of freedom as well as to the systems with a very large number of
degrees of freedom.”14 The great complexity of systems of statistical mechanics thus
does not play any role in the solution to the ergodic problem that, to the contrary, is
really typical of such systems.

Second, it is hard to know if for a system the MT is valid, consequently also the
practical calculation of phase averages will be complex. Khinchin maintains that
furnishing an approximate method for evaluating phase averages is part of the solution
to the ergodic problem.15

Third, the hypothesis of MT seems to be a foreign body in the overall ergodic
theory. The ergodic theory without MT is substantially a dynamic of the phase space: it
expresses the general transformation properties of a dynamical system. The entire
statistical weight is therefore supported by this hypothesis introduced without any
argument in a way that is completely analogous to the ergodic hypothesis. Moreover,
considered in a general sense, this is also in contradiction with the theory of dynamical
systems, as Khinchin’s following argument demonstrates.

Let us say actually that I is an integral not depending on energy. Then it follows
that:

a) I cannot be constant on every hyper-surface, otherwise it would be determined
by the energy thereby contradicting the assumption of independence; also,

b) I must be a constant or otherwise a real number a exists such as we can
define, against the MT, two subsets of finite measure Σ in which I ≤ a and I > a.16

To  get around this argument requires the consideration of a preliminary
question: do we have any reason to consider energy the unique global integral of
motion, namely what is the status of the other integrals? As stated, once the number n of
degrees of freedom is fixed, the Hamiltonian equations defines 2n-1 integrals of motion
for the system. The point is that the evolution of the system does not depend directly on
all these integrals, as even experience suggests. Actually, most integrals do not make

                                                  
14 Khinchin (1949, p. 62).
15 Khinchin (1949, p. 47).
16 Khinchin (1949, pp. 55–62).
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physical sense. An in–depth study of the problem needs a clear specification of a
condition of physical significance. To determine this condition, the following
consideration will be our starting point (Khinchin 1949, pp. 56–57):

So far it was always self–evident, although not stated explicitly, that two distinct points of the
phase space represent two distinct states of our mechanical system. Actually, however, in many
cases, to distinct points of the [phase] space may correspond identical states of the mechanical
system. Let us explain this. In many cases we are forced to characterize the same physical state
of the system not by one, but by several sets (sometimes even by infinitely many) of values of
its dynamic coordinates. Thus for a point which moves uniformly along a circumference, if we
determine its position by the central angle counted form a fixed radius, we must consider as
identical the states for which the values of this angle differ by a multiple of 2π.

To give the conditions for physical significance, let’s say that the phase function
must have the same value for phase points which correspond to the same physical state.
If this condition is satisfied by a phase function, then it will represent a physical
quantity, and if this is satisfied by an integral of motion, then it is said to be uniform.17

Actually, it can be proved that this condition is generally sufficient for a number k of
integrals that, due to the fact that they correspond to a physical quantity, are called
controllable18. Thereby a new invariant subset Ik can be defined, having the dimension
2n – k, and likewise it makes sense to introduce a new invariant measure function in
order to develop a new general ergodic theory. In general, however, in statistical
mechanics, systems for which it makes sense to place energy as the only integral are
considered in order to obtain the hyper-surface Σ, and on it all the integrals converge
almost everywhere, in which case they can be considered free.19

Now, let us say that it is impossible to divide the set into two subsets of positive
measure inasmuch as the corresponding points at the same physical phase belong to the
same subset. Such a division is called normal, and the impossibility that this can be
brought about is the hypothesis of metric transitivity in the physical sense (MTP).20

Introducing this new concept, it is possible to partially avoid the above argument. Let us
take an integral I; if it is uniform (or normal) the previous argument is conclusive
anyway. On the other hand, if I is not a normal integral, the division of the hyper-
surface into two invariant subsets of a positive measure is incompatible with the fact
that the subsets must contain points of the same physical phase (Khinchin 1949, p. 58):

If our integral I is not normal, then, in determining the sets M1 and M 2 we cannot start by
arbitrarily subdividing the set of all values assumed by the integral I in two parts. If we want
the subdivision (M1, M 2) of the surface Σx to be normal, we must see to it that the values
assumed by I at any two physically equivalent points are always placed in the same part. This
requirement […] may turn out to be incompatible with the requirement that M1 and M2 be
invariant sets of positive measure. In such a case our argument becomes invalid, and the
question of possibility of metric indecomposability in the extended sense remains open.

Consequently, it is required that the system not have other normal integrals apart
from energy, and so the MTP would remain a hypothesis as long as the empirical and
analytical methods are not available, in order to discover in advance the integrals of

                                                  
17 Or normal according to Khinchin’s terminology; by assuming the function is continuous, this reasoning
holds for an arbitrary neighborhood.
18 In order to distinguish them from the remaining called free.
19 Cf. Jancel (1963, p. 325); this is due to the type of systems which are dealt with in statistical
mechanics, namely isolated systems closed in a vessel.
20 Or, in Khinchin’s terminology, metric transitivity in extended sense.
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motion. Therefore, even if basically it is possible to avoid the more obvious
contradictions using the principles of mechanics, the MT remains an extremely
problematic hypothesis, and especially lacking in real and proper points in its favor.
Moreover, as has been seen, the contradictions deriving from the MT may be overcome
only considering more closely the states of the system that have physical meaning and
this requires an in-depth consideration of the specific characteristics of the system itself.

What follows, according to Khinchin, is that the general point of view assumed
by ergodic theory does not lead to a satisfactory foundation of statistical mechanics,
since the authentic statistical meaning of the ergodic problem is not linked either to the
physical characteristics of the systems of statistical mechanics nor to physical processes
effectively operating in nature (Khinchin 1949, pp. 53-54):

All this story of the ergodic problem appears to us instructive since it makes the efficacy of
introducing various hypotheses which are not supported by any argument very doubtful. As is
usual in such cases, when we are not able to submit really convincing arguments in favour of
replacing the time averages by the phase averages, it is preferable, and also simpler, to attempt
as the ‘ergodic hypothesis’ the very possibility of such a replacement, and then to judge the
theory constructed on the basis of this hypothesis, by its practical success or failure. This, of
course, does not mean that the theoretical justification of the accepted hypothesis is to be
forgotten. On the contrary, this question remains one of the most fundamental in the statistical
mechanics. We wish only to say that the reduction of this hypothesis to others is little justified
and does not appear to us to be very efficient.

The real foundation of statistical mechanics consists therefore in linking the
solution of the ergodic problem to the essential characteristics of physical systems:
their statistical nature and the large number of degrees of freedom.

3.2 The asymptotic ergodic theorem.

Khinchin’s approach to the ergodic problem is based on two crucial
assumptions: 1) the systems effectively studied in statistical mechanics possess a large
number of degrees of freedom, namely they are comprised of many components
(molecules, particles and so on); 2) the phase functions of thermodynamic interest are
sum-functions, that is they may be written as the sum of phase functions calculated on
single components. In other words, a phase function f is:

∑
=

=
n

i
iff

1

,

where the fi are the corresponding phase functions for each of the components n of the
system.

Both of these assumptions regard the particularities of systems of statistical
mechanics and therefore specify those conditions that the ergodic theory leaves general.
The result is a weaker version of the ergodic theorem. The key passage of Khinchin’s
theorem is the following property: the sum-functions have a small dispersion, of the
order of n. In other words, call f  the phase average of the function f defined on the
hyper-surface of constant energy Σ, we have:21

                                                  
21 Khinchin’s original argument (Khinchin 1949, pp. 62–69) is not always clear. Initially he calculated
dispersion with respect to whatever function A, therefore making A = 0 to simplify calculations and in the
end, making A equal to the phase average. Obviously, this last passage only regards the definition of
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)(
2

nOdffS =Σ−= ∫
Σ

.

In this way, the size of the dispersion of the sum-functions is linked to the
number of degrees of freedom. Now let us define the quantity:

2/12/1 )( SnOdffS ==Σ−=′ ∫
Σ

.

From Schwartz’s inequality we have:

)( 2/12/1 nOSS =≤′ .

The ergodic theorem concerns the distance that exists between the infinite time
average and the phase average. Let us define the following averages:

€ 

ˆ f T =
1
T

fdt
0

T

∫ ,

T
T

ff ˆlimˆ
∞→

= .

The first represents the time average f between the instants 0 and T, while the
second represents the infinite time average, that is, the quantity that we identify with the
value of empirical measurements on the system. We must now evaluate the set of phase
points for which the difference between the time average and the phase average is
greater than a certain value  a > 0. Let us define the two sets:

€ 

M1 = P ∈ Σ : ˆ f − f > a{ },

{ }2/ˆ:2 affPM T >−Σ∈= .

Birkhoff’s theorem assures us that the infinite time average of f exists, therefore
for T _ ∞ the following relationship between measurements of the two sets is obtained:

2

)(
)( 1
2

M
M

µ
µ > ,

where µ is the measure function defined on the hyper-surface Σ. Khinchin’s aim, at this
point, is to show that the measure M1 tends to diminish with the number of degrees of
freedom. With some calculations we may obtain:

                                                                                                                                                    
dispersion (or variance) and may be performed from the beginning (cf. Jancel 1963, pp. 21–27 and
Truesdell 1961, pp. 45–51).
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€ 

aµ(M1)
4

< ˆ f T − f dM2
M 2

∫

≤ µ(Σ) f − f dΣ
Σ

∫ = ′ S m(Σ),

from which it follows that the relative measure of M1:

a

SM ′
<

Σ

4

)(

)( 1

µ
µ

.

If now a = S′3/2, we have for the relative measure of the set:

{ }4/31
ˆ: knffPM >−Σ∈= ,

the following inequality is valid:

( )4/11

)(

)( −≤
Σ

nO
M

µ
µ

.

In other words, the relative measure of the set of points for which the phase
average differs from the time average by a factor that decreases with the number of
degrees of freedom diminishes even more rapidly with the number of degrees of
freedom. Accordingly, the large number of degrees of freedom assures that the phase
average will always be maintained very close to the infinite time average.

If we pass from the measure of sets to probability and we apply Tchebichev’s
theorem, we may express Khinchin’s result in the following terms:
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In this way, the probabilistic meaning of Khinchin’s theorem finds expression
(Truesdell 1961, p. 48):

This inequality shows that the probability of a trajectory of which [the infinite time average]
differs from [the phase average] by more than a multiple of the fourth root of the phase
dispersion is itself less than a multiple of the square root of that dispersion. In other words, a
nearly constant function is very probably a nearly ergodic function. It is simple ergodic
estimates of this kind that render possible Khinchin’s solution of the ergodic problem

3.3 Remarks about Khinchin’s theorem

Khinchin’s theorem shows that the measure of the set of phase points for which
the infinite time average of whatever function differs from the phase average more than
a number small as we please, tends to zero.

First, Khinchin’s theorem is a solution of the ergodic problem if zero measure
implies zero probability. In formal terms, we have to assume that the measure defined
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on Σ is ‘absolutely continuous’ with the measure of probability.22 Obviously, this
supposition inherits the problem of zero measure sets, but as has been seen, this
question is implicit in the definition of the ergodic problem that Khinchin accepts as his
own starting point.

Second, Khinchin’s approach is asymptotic in two different ways. The first way
is evident: the theorem tends to an exact solution of the ergodic problem if n _ ∞ ,
therefore this is asymptotically exact for systems with a number of components that
tends to the infinite. The second way, which is more obscure, regards the fundamental
assumption that considers the phase functions as sum-functions. From this derives the
property that is the true core of the theorem: phase functions have small dispersions.23

To obtain this property,24 Khinchin must perform an essential move: consider a generic
phase function as a random variable sum of n individual random variables.

Khinchin’s argument is the following. The various components of the systems
are considered as stochastically independent, thus the phase functions associated with
them are also random variables. Accordingly, the phase function of the entire system is
the random variable sum of individual random variables. This allows Khinchin to apply
the central limit theorem and conclude that the comprehensive system will have a
Gaussian probability density. Now, under these hypotheses, the dispersion of a sum-
function is:

€ 

Df = f − f ( )
2{ } = f − f i( )

i=1

n
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= Dfi
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n

∑ + DfiDfk( )1/ 2R fi, fk( )
i≠k
∑ ,

where R(fi, fk) represents the coefficient of correlation between the phase functions
corresponding to the components i and k. Exploiting the central limit theorem and the
properties of correlation that we will examine shortly, Khinchin is able to show that:

€ 

Df = Dfi
i=1

n

∑ +
1
B

bibkDfiDfk( )1/ 2R ei, f i( )R ek, fk( )
i≠k
∑ +O n1/ 2( ) ,

where B, bi, bk are respectively the variances of the system’s and of component i and k’s
probability density, while ei and ek are the energies of the two components. Since the
second sum on the right side is on the order of n2, Khinchin may conclude that Df =
O(n): “this fact establishes the ‘representability’ of the mean values of the sum-
functions and permit us to identify them with the time averages which represent the
direct results of any physical measurement.”25

The true meaning of the assumption of phase functions as sum-functions is
therefore that we must consider the single components of the system as dynamically

                                                  
22 Khinchin (1949, p. 66).
23 It is clear that Khinchin’s theorem consists of essentially this statement because, if the phase functions
are almost everywhere equal to their phase average, then even their infinite time average will be equal to
the phase average. Having established this fundamental fact, the rest of Khinchin’s argument serves to
link the measure of the sets for which convergence with the number of degrees of freedom does not
occur.
24 Khinchin (1949, pp. 156–165).
25 Khinchin (1949, p. 157).
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uncorrelated. In other words, the values of whatever individual phase function
calculated in subsequent times will be stochastically independent. Khinchin shows in
fact that, if:26

( ))()(
1

)( stftf
Df

sR += ,

is the coefficient of correlation between the function f calculated over time t and the
same function calculated over time t + s, then the phase average and the infinite time
average of f will coincide if R(s) _ 0 when s _ ∞. Herein is the second element of
asymptoticity in Khinchin’s theorem.

It is helpful to examine this element in greater detail. The ergodic behavior of
systems of statistical mechanics since the time of Boltzmann’s studies has been traced
to the energetic interaction between components of the system. If we assume, as
Khinchin does, that the components are stochastically independent and that the phase
functions may be written as the sum of individual functions, we obtain a paradox
(Khinchin 1949, p. 42):

If we take the particles constituting the given physical system to be the components in the
above defined sense, we are excluding the possibility of any energetical interaction between
them. Indeed, if the Hamiltonian function, which expresses the energy of our system, is a sum
of functions each depending only on the dynamical coordinates of a single particle (and
representing the Hamiltonian function of this particle) then, clearly, the whole system of
[Hamiltonian] equations splits into component systems each of which describes the motion of
some separate particle and is not connect in any way with other particles27

In order to avoid this difficulty we must admit that the components are not
totally separate but interact, exchanging energy in very small quantity with respect to
the total energy of the system. Such components are called ‘weakly coupled.’ If the
components are weakly coupled, the dynamic correlations that arise from their
interaction are rapidly lost and their behavior is comparable to that of random variables.
Then, the great number of degrees of freedom leads to the behavior described by the
central limit theorem (Khinchin 1949, p. 159):

With an ever increasing number of molecules, the correlation between the dynamical
coordinates of any two of them becomes very weak; we have seen, in fact, that the correlation
coefficient of two molecules tends to zero when n _ ∞ . Hence using a well known theorem of
the theory of probability one can expect that the distribution of the sum functions for a large
number of molecules will be, as a rule, similar to the Gaussian distribution

Thus, both the dynamic correlations between subsequent states of the same
component and those between distinct components are progressively destroyed by the
hypothesis of weak coupling of the components and the assumption of a large number
of degrees of freedom. Khinchin’s theorem is therefore asymptotic in two senses: first,
it requires that the number of degrees of freedom tends to infinity, second, it requires
that the time be sufficiently great to allow for destruction of the dynamic correlations
between weakly coupled systems. Accordingly, by putting together the two conditions
we can say that Khinchin’s theorem is based on the hypothesis of progressive

                                                  
26 Khinchin (1949, pp. 67–68).
27 See also Jancel (1963, p. 322).
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annihilation of dynamic correlations. The statistical and asymptotic meaning of the
theorem lies in this hypothesis.

4. ERGODIC THEORY VS. KHINCHIN’S APPROACH: A COMPARISON

Ergodic theory attempts to resolve the ergodic problem by using structural
characteristics of the phase space of Hamiltonian systems and the hypothesis of the MT.
From this point of view, the probabilistic aspect of the problem is clearly subordinate to
questions of general dynamics. In contrast, Khinchin’s approach is based on specific
characteristics of systems of statistical mechanics with the aim of showing that these
lead to a statistical behavior. In a certain sense, he reduces the dynamic questions to
probabilistic questions. This relationship between ergodic theory and Khinchin’s
approach is illustrated well by the following consideration (Jancel 1963, pp. 26–27):

It must be emphasized also that even though in the […] proof [of the Khinchin’s theorem] a
predominant role is played by statistical considerations based on the limit process n→∞, it does
not impose any structure which is peculiar to the Hamiltonian of the system, apart from the
canonical nature of the time–evolution; this point of view is contrary to that of Birkhoff
theorem, where the statistical element is reduced to eliminating a set of zero measure, but
where the conditions imposed on the structure of the system play an essential role

As we have seen, criticism of the ergodic theory revolve around the fact that this
is principally a theory of the state of equilibrium. On the contrary, using concepts like
annihilation of dynamical correlations, Khinchin’s approach develops a point of view
on the ergodic problem that is clearly shifted toward the non-equilibrium statistical
mechanics. The hypothesis of annihilation of dynamic correlations, the large number of
degrees of freedom and the derivation of approximate formulas for the calculation of
phase averages are all typical instruments of non-equilibrium theories. Obviously, I’m
not maintaining that Khinchin’s is a theory of the state of non-equilibrium strictu sensu.
His point of view, and herein lies the principal difference with ergodic theory, limits
itself to a consideration of the state of equilibrium as one of the states that possesses
certain characteristics, in which the system may find itself and not the only one worthy
of attention. In the final analysis, in fact, Khinchin’s approach consists of substituting
the hypothesis of the MT – that regards geometry of phase spaces of a system in
equilibrium – with the hypothesis of annihilation of dynamic correlations – that regards
the physical evolution of a system in an arbitrary state. To better understand the
meaning of this passage, it is helpful to introduce the distinction between ‘diffusion
hypothesis’ and ‘randomization hypothesis’.28

A diffusion hypothesis is a statement that expresses the following idea:

DH. Sooner or later a system will pass through all the states of the system phase
space.

In the history of statistical mechanics, there are many examples of DH: the
ergodic hypothesis or Gibbs’ and Tolman’s postulate of equi-probability a priori are
perhaps the best-known cases. A randomization hypothesis, on the other hand, is a
statement like the following:

                                                  
28 This distinction was introduced and explored in Badino (2005).
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RH. The evolution of the system from time t0 to time t0 + dt is regulated by a
stochastic process S.

An example of RH is given by Boltzmann’s calculation of the number of
collisions. He assumes that the number of collisions that happen in an interval of time dt
among molecules with a velocity v1 and molecules with a velocity v2 depends solely on
the product of the respective total numbers of molecules.29 It is evident that this
assumption totally overlooks eventual dynamic correlations among the molecules.
What relationship exists between DH and RH?

In the first place, it is clear that the DH is an extremely general statement, while
the RH is very specific because it is valid for an initial instant t0 and for a particular
stochastic process S. Still, a DH is equivalent to stating that the evolution of the system
is regulated by some stochastic process that lasts over time. In fact, DH maintains that
the evolution of the system depends only on the probability of the states that this can
assume, therefore it is the result of a stochastic process. This, however, does not tell us
what this process is, but only that it is valid over time, or rather, that its conditions of
validity are maintained indefinitely along the phase trajectory.

An RH, on the other hand, maintains that a particular stochastic process
regulates an infinitesimal portion of evolution of the system. This specifies the nature of
the process, but it is not at all implicit in this that the stochastic process will continue to
be valid beyond that infinitesimal interval starting with the initial time t0. Boltzmann
was perfectly aware of this, in fact, he introduced the hypothesis of molecular chaos to
allow that the assumption of the number of collisions was valid for the entire evolution
of the system. A simpler example is the following. If I throw the dice once, I may think
that its evolution is linked to the distribution of probability among the sides. But if I
throw it a second time, it is not obvious that this assumption will continue to be valid. I
could suppose that the result of the second toss depends on the way in which the first
toss was done. If I admit that even the second toss depends only on the distribution of
probability a priori, I am advancing an assumption that is completely different, that
according to which the stochastic process is valid over time.

From this standpoint the relationship between DH and RH is clear. DH affirms
that a certain stochastic process is valid over time, but it does not specify the nature of
such a process. The RH, to the contrary, determines the specific characteristics of the
process but is not valid indefinitely over time. Thus the DH requires an RH to be more
specific, while the RH requires a DH to be valid over time.

On one hand, the MT is clearly a DH. As we have seen, this affirms that no
integral of motion has been overlooked. Now, the phase trajectory must pass through all
the states admitted by these integrals of motion, because if it passed through only a
subset of them, we could define such a subset through a new integral of motion against
the MT. On the other hand, the hypothesis of annihilation of the dynamic correlations
that Khinchin proposes as an alternative to MT affirms the validity over time of a
stochastic process. Even if Khinchin fails to distinguish clearly between DH and RH, he
is well aware of the fact that his hypothesis of annihilation «represents the basic idea
of» Boltzmann’s molecular chaos.30 Thus, his hypothesis has a meaning that is exactly
analogous to the MT, as emerges also from the following consideration.

The property of sum-functions of having small dispersion remains valid even if a
new integral of motion appears in the system. Still, in this case, the phase trajectory will
be limited to a subset of the phase space and this subset will therefore have zero

                                                  
29 This is the so-called Stosszhalansatz, the assumption of the number of collisions.
30 Khinchin (1949, p. 67).
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measure with respect to phase space itself.31 To avoid this problem, it is necessary that
the conditions that allow for the success of Khinchin’s stochastic process maintain
themselves indefinitely, or rather, that the integrals of motion considered be all and only
those that regulate the evolution of the system. This last assumption is precisely the MT.

What follows from this is that Khinchin’s approach substitutes the MT with a
hypothesis that has an analogous meaning. Inasmuch as this move leads to a scarce gain
from the logical point of view, it is however very important for the interpretation of the
ergodic problem. In fact, while the ergodic theory considered ergodicity as an additional
hypothesis to the dynamic characteristics of the system and substantially disjointed
from them, Khinchin shows the link existing between ergodicity and stochastic
characteristics of evolution of a system in an arbitrary state. His point of view shifted
toward non-equilibrium underscores the foundational role of ergodicity and in a wider
sense of ergodic theory: furnishing a general condition of validity of the stochastic
processes that regulate the processes in states of non-equilibrium.

5. CONCLUSIONS.

One of the most interesting foundational problems of statistical mechanics
regards the embedding of equilibrium in the non-equilibrium theory. As we have seen,
the analysis of the state of equilibrium often moves from suppositions that are difficult
to reconcile with those at the base of non-equilibrium statistical mechanics. To try to
recompose this fracture by bringing back a unity to statistical mechanics is a goal that is
no less important than explaining the predictive success of phase averages. The
distinction between DH and RH and the analysis of their relationships should be a step
in this direction. Khinchin’s point of view,  it seems to me, asserts itself in this context.
His approach tends to resolve the ergodic problem using suppositions and typical
instruments of non-equilibrium statistical mechanics and the result is a weaker, but
more interesting version of the ergodic theorem. Above all, it must be said that
Khinchin has the merit of having developed the statistical meaning of ergodicity and the
relationships that exist between this and the laws of evolution of systems more than
with the geometric structure of phase space.

                                                  
31 Cf. Jancel (1963, pp. 36–37).
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