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On the quantization of wave fields

L. Rosenfeld

Introduction

Heisenberg and Pauli 1 have recently made substantial progress in the formula-
tion of the general quantum mechanical laws for electromagnetic and material
wave fields through the systematic development of Dirac’s method of second
quantization. In addition to certain deeper lying technical difficulties a charac-
teristic difficulty of a more formal nature appeared; the momentum conjugate
to the scalar potential vanishes identically. The formation of the Hamilton func-
tion and the commutation relations cannot be carried out without further work.
Three methods have been proposed to date to resolve these problems. They do,
to be sure, fulfill their objective but they can hardly be viewed as satisfactory.

1. The first Heisenberg-Pauli method is a purely analytical artifice.2 New
terms are added to the Lagrange function, multiplied by a small parameter ε.
These have the effect that the above-mentioned momentum no longer vanish.
In the final result one then takes the limit ε = 0. However, the ε-terms lead to
unphysical caculational complications and destroy the characteristic invariance
of the Lagrangian under the gauge invariance group.

2. The second Heisenberg-Pauli method 3 uses this invariance in an essential
way. The scalar potential is given a certain arbitrary value, e.g. zero; then
the Hamiltonian method delivers one less equation of motion. Supposing the
missing equation of motion is C = 0, then one finds as a consequence of the
gauge invariance of the Hamiltonian that C = constant. The choice of the value
C = 0 for this constant signifies a restriction to a system of terms that do
not depend on each other. But distinguishing a component of the 4-potential

1W. Heisenberg and W. Pauli, Zeit. f. Phys. 54, 1 (1929); 59, 168 (1930). In the following
referred to as H. P. I and H. P. II.

2H.P.I, pages 24-29, 30 ff.
3cf. L. Rosenfeld, Zeit. f. Phys. 58, 540 (1929)
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necessitates a proof of the relativistic covariance of this method, and this check
is very troublesome.

3. The Fermi method 4 consists also in adding terms to the Lagrangian in
such a manner that no momentae vanish identically. In order that the result-
ing field equations agree with the usual equations certain constraints must be
fulfilled. Then it must be shown that when these constraints hold on a t = con-
stant slice they continue to hold under propagation in time. The disadvantage
of this method is that once again the gauge invariance is destroyed.

The identical vanishing of the cited momentum component is by no means
an isolated phenomenon; the origin is the gauge invariance of the Lagrangian as
is shown below in a simple, comprehensive discussion. In an analogous fashion,
i.e., generally, the appearance of identical relations between variables and con-
jugate momentae is to be expected in all cases in which the Lagrangian permits
a suitably built group. As I was investigating these relations in the especially
instructive example of gravitation theory, Professor Pauli helpfully indicated to
me the principles of a simpler and more natural manner of applying the Hamil-
tionian procedure in the presence of identities. This procedure is not subject to
the disadvantages of the earlier methods. In the following the subject will be
treated first from a general group theoretical perspective, and then illustrated
with various physical examples. 5

1. Part One: General Theory

§1. Assumptions about the Lagrange function and the un-
derlying group

We consider any dynamical system defined through the field quantities Qα(x1, x2, x3, x4)
that depend on the spatial coordinates x1, x2, x3 and the time coordinate x4 = ct
(and not, as in H. P., x4 = ict !). We need to make no assumptions about the
Lagrange function L

(
Q; ∂Q

∂x

)
as long as we remain in the framework of the

classical theory, i.e., we work only with c-numbers. If we were to consider the
Q variables as q-numbers (while the spacetime coordinates remain c-numbers)
then we would have to take into account that the rule for the derivative of the
function of a function would lose its general validity. 6 If we want to keep cer-
tain properties of the Lagrange function that follow from this rule (and this will
be the case) then it will be necessary to make certain restrictive assumptions
that preserve these properties in spite of the failure of the derivative rule. It
turns out that from the mathematical point of view these restrictions will be
extensive, though for physically interesting Lagrangians they are fulfilled. They
concern the factor ordering of non-commuting terms, and the analytical behav-

4cf. H. P. II, page 175, footnote
5Here I want to stress once and for all that in the special cases treated in the works H. P. I

and H. P. II the path to the desired generalization frequently suggested itself to me. It would
serve little purpose in the following to refer to each instance.

6cf. H. P. I, p. 18, further p. 14, footnote 1.
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ior of the Lagrange function; it must be at most quadratic in the derivatives of
the Q.

To abbreviate will often write Qα,ν instead of ∂Qα

∂xν , and also Q̇α instead of
Qm,4 ≡ ∂Qα

∂x4 . Furthermore we will suppress the summation sign following the
familiar rule. With these choices the Lagrange function takes the form

(1) 2L = Qα,νAαν,βµ(Q)Qβ,µ + Qα,νBαν(Q) + Bαν(Q)Qα,ν + C(Q).

Although only the Q̇α do not commute with the Qα, we must nevertheless retain
a fixed factor ordering for the remaining derivatives since certain operations, d

dx4

for example, convert variables to others that no longer commute. Therefore the
result of such operations depends on the original factor ordering.

Since c-number considerations are often superior from the point of view of
generality and elegance we will for the moment in this first overview use them.
Later we will indicate the appropriate modifications required for q-numbers.
However, to avoid unnecessary repetition we will refer to commutation relations
for c-numbers, whereby we naturally mean the corresponding Poisson brackets.

We turn now to the definition of the transformation group that the La-
grangian function permits (the precise sense to be specified shortly). We are in
no way attempting in this investigation to address the most general situation.
Rather, we seek a description that is sufficiently general that in the physical ap-
plications the deeper interconnections are clearly evident. We do not therefore
ask for the most general Lagrangian from which identities of the type mentioned
above will result. Rather we will take as our basis a special yet extended class
of continuous infinite groups. We show that they lead to identities for arbitrary
c-number Lagrangian functions. 7

We characterize our group through its infinitesimal transformations. We
assume that both the xν and the Qα transform in a certain way. Indeed, the
δxν (respectively the δQα) depend on r0 arbitrary real functions ξr(x) (r =
1, 2, · · · r0) and their derivatives up to order k (respectively j); the coefficients
of these derivatives must be real, and (here is the group specialization) the
δxν depend only on xν while the δQα depend only on xν and Qα, and not on
derivatives of the Qα. Explicitly,[1]

(2)

{
δxν = aν,0

r (x)ξr(x) + aν,σ
r (x) ∂ξr

∂xσ + aν,σ···τ
r (x) ∂kξr

∂xσ···∂xτ ,

δQα = c0
αr(x, Q)ξr(x) + cσ

αr(x, Q) ∂ξr

∂xσ + cσ···τ
αr (x, Q) ∂jξr

∂xσ···∂xτ .
[2]

In addition we have the essential assumption, 8

(3) j ≥ k + 1.

Concerning the commutation relations relating to the functions that appear in
(2), the ξr must be c-numbers, and this property is preserved (corresponding to

7The method that is used here furthermore gives an immediate response to the general
question that was just posed. In specially constructed Lagrange functions the group does not
even need to be infinite in order that identities result.

8We set ∂0ξ
(∂x)0

≡ ξ and ∂−1ξ
(∂x)−1 ≡ 0. [3]
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the fact that the ξr depend only on the xν). Since the a depend only on the xν

we may also consider them to be c-numbers. Then the δxν are also c-numbers,
as they must be in order that we may treat the xν as c-numbers.

The most important groups appearing in physics are of this type (cf. the
second part of this work).

It remains for us to express the fact that the integral∫
Ldx1dx2dx3dx4,

is invariant under the transformations (2). For this purpose we introduce a few
concepts.

Besides the “local” variations δΦ(x, Q, ∂Q
∂x , . . .) we have the “substantial”

variation [4]

(4) δ∗Φ = δΦ − dΦ
dxν

δxν ;

if we represent transformed quantities with a prime, then we have

δΦ = Φ′[x′;Q′(x′); · · · ] − Φ[x;Q(x); · · · ],

while
δ∗Φ = Φ′[x;Q′(x); · · · ] − Φ[x;Q(x); · · · ],

The following important formulae result (also for q-numbers):

(5) δ∗
dΦ
dxν

=
d

dxν
δ∗Φ,

and [5]

(6) δ
dΦ
dxν

=
d

dxν
δΦ − dΦ

dxρ

dδxρ

dxν
.

A quantity R is called a scalar density (with respect to the group) when it
transforms with the following properties:

(7) δ∗R +
d

dxν
(Rδxν) = 0,

or, according to (4), [6]

(8) δR + R
dδxν

dxν
= 0.

Quantities depend in general on two kinds of indices, first on indices α, β, γ, · · ·
whose range is that of the index α in Qα. Secondly, they depend on the in-
dices µ, ν, · · · which as with the index of xν range from 1 to 4. In particu-
lar the index r in ξr represents one or more systems of indices of the form
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{α, β, · · · ;µ, ν, · · · }numbered in an arbitrary one-dimensional order. The in-
dices of type α, β, · · · could in their turn be multiple and in particular contain
systems of indices µ, ν, · · · .

A contravariant tensor Kαν is defined through the transformation property

(9) δKαν = Kαµ dδxν

dxµ
− Kβν ∂δQβ

∂Qα
;

in the q-number case this definition contains an arbitrariness in the underlined
term that we will fix by setting

Kβν ∂δQβ

∂Qα
=

1
2

(
Kβν ∂δQβ

∂Qα
+

∂δQβ

∂Qα
Kβν

)
,

where x† is the Hermitian conjugate (adjoint) to x. [In the following we will use
the notation

x =
1
2
(x + x†).]

With this assignment a Hermitian tensor remains a Hermitian tensor under the
transformation group.

A covariant tensor Kαν has the transformation property

(10) δKαν = −Kαµ
dδxµ

dxν
+ Kβν

∂δQα

∂Qβ
;

the variation of mixed tensors Kαβ···γδ···
µν···ρπρ is formed in analogy with (9)

and (10).
A tensor density Rαν transforms as the product of a tensor Kαν with a

scalar density R, namely

(11) δRαν = Rαµ dδxν

dxµ
− Rβν ∂δQβ

∂Qα
− Rαν dδxµ

dxµ
.

We are now in position to formulate the invariance condition with respect
to the Lagrangian function. In order that the integral

∫
Ldx1dx2dx3dx4 be

invariant we conclude, as is well known 9, that L must be a scalar density up
to a divergence L′ ≡ dRν

dxν . Explicitly:

(12) δ(L + L′) + (L + L′)
dδxν

dxν
= 0.

Since as we have said we are not concerned with complete generality, we will
be satisfied in treating in order the following characteristic cases:

9cf. eg. E. Noether, Gött. Nach. 1918, p. 211. The divergence dRν

dxν appears if the integralR Ldx1 · · · dx4 is not invariant for an arbitrary integration domain but only when Rν vanishes
on the boundary.
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1. L′ = 0, i.e., L is itself a scalar density:

(13) δL + Ldδxν

dxν
= 0;

2. L′ contains second derivatives

Qα,νρ ≡ ∂2Qα

∂xν∂xρ

only linearly, i.e.,

(14) L′ ≡ d

dxν
[fν,αρ(Q)Qα,ρ],

and j = 0 (cf. equation (3)).

In both cases the investigation splits into two steps:
a) Implementation of the Hamiltonian method;
b) Proof of covariance of the Hamiltonian procedure under the relevant group.

We begin with the first case.

§2. The conjugate momentae and the identities

Henceforth we assume condition (13) is satisfied.
First we set

(15) Pαν =
∂L

∂Qα,ν
,

and we take as momentae

(16) Pα ≡ Pα4 =
∂L

∂Q̇α

.

We confine ourselves first to the classical c-number theory.
We substitute into (13) δQα, Qα,ν and δxν through their values given in

(2) and (6) as functions of ξr and derivatives. We obtain several identities
in expressing the fact that the coefficients of individual derivatives of ξ must
identically vanish. These identities generally contain the Q̇α not only through
the just introduced functions Pα but also through other relations (e.g., through
the other Pαν , ν �= 4); the system of equations (13) is therefore not of interest
in solving for Q̇α; it simply represents relations that each solution Q̇α(Q,P)
must fulfill. If some of the identities under consideration contain only the Qα

(including spatial derivatives) and the Pα, then the relations are fundamentally
different. They signify that the equations (2) are not independent so that the
general solution will depend on arbitrary parameters (more precisely, spacetime
functions).
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The last case always occurs with the group (2). The highest derivative of ξν

in (13) is
∂j+1ξr

∂xσ · · · ∂xτ∂xν
;

according to the assumption (3) the corresponding identities read

(17c)
∑

Pανcσ···τ
αr ≡ 0, 10

where the summation runs over all permutations of the numbers ν, σ, · · · , τ . For
the case ν = σ = · · · = τ = 4 one has in particular

(18c) Pαc44···4
αr ≡ 0;

since the c contain only the Qα we have in (18c) r0 identities of the last type
considered that we will call “proper” identities.[7] Furthermore it is easy to see
that in general (i.e., in the case that the Lagrange function possesses no special
properties ) that no more identities appear. The general solution Q̇α(Q,P, λ0)
of (16) depends on r0 arbitrary parameters λ.

In the previous methods mentioned in the introduction one proceeded either
through the destruction of the invariance properties of the Lagrangian (methods
1 and 3) or through the choice of a special solution Q̇α(Q,P, λ0) (method 2). In
contrast the fundamental idea of the new method is to construct the Hamilton
function using the general solution Q̇α(Q,P, λ) with undetermined λr, without
for the moment worrying about the proper identities. Field equations and com-
mutation relations have the canonical form, with the former containing the λr.
In this canonical formalism the proper identities ultimately become constraints.
We will see that in addition to its simplicity the method has the advantage that
the proof of covariance can be carried out without difficulty.

§3. Transition to q-numbers

In passing to q-numbers we must first investigate the form of the relations
described above. According to (1) the relation (15) reads

(19) Pαν =
1
2
(pαν + pαν†) = pαν ,

with

(20) pαν = Aαν;βµQβ,µ + Bαν .

A bar over an index of the form µ : µ signifies that the index ranges from 1 to 3;
the summation convention will also hold for barred indices. With this notation
according to (19) and (20) we write

(21)
{

Pα = pα,

pα = AαβQ̇β + Dα,

10Equation numbers will be denoted with c when they have unlimited validity only for
c-numbers.
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where we define

(22)
{

Aαβ ≡ Aα4;β4,
Dα ≡ Aα4;βµQβ,µ + Bα4.

We assume in this equation that

Aαν;βµ = Aβµ;αν ,

and in particular that
Aαβ = Aβα

which is of course no additional restriction.
The considerations of the previous paragraph yield instead of (17c) and (18c)

(23)
∑

cσ···τ
αr pαν ≡ 0,

and

(24) c4···4
αr pα ≡ 0.

Since in particular (24) holds identically in the Q̇α we have according to (21)

(25) c4···4
αr Aαβ = 0,

(26) c4···4
αr Dα = 0;

the coefficients in the Lagrange function must satisfy these and other conditions
in order that it possess that required density property. We display the relations
(25) and (26) for later use.

We cannot proceed further without knowing something about the commu-
tation relations [Qα, Q̇β ]. If we were to know the Q̇β as functions of the Qα and
Pα, then we would be able to derive the value of [Qα, Q̇β ] from the canonical
commutation relations, which, as we have said, we wish to retain. But it is not
clear a priori whether we can from (21) derive the Q̇β as functions of the matri-
ces Pα, or only as functions of the matrix elements of Pα. The only way we can
overcome this problem is to make a tentative assumption about the [Qα, Q̇β ] on
whose basis the solution of (21) takes the form Q̇α(Q,P, λ). Later we can check
whether the assumption is compatible with canonical commutation relations.

A related assumption is the following: the [Qα, Q̇β ] should be anti-Hermitian
11 functions of Qα and Qα,ν , but not of the Q̇α (respectively the Pα).[8]
(Whether undetermined factors like δ(0) appear when Qα and Q̇β are taken
at the same location is irrelevant.) We now draw a few immediate conclusions
from these assumptions:

1. According to (20) both [Qα, pβν ] and [Qα, pβν†] are anti-Hermitian func-
tions of the Qα and the Qα,ν alone.

11A q-number x is said to be anti-Hermitian when x† = −x.
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2. The [Qα, Q̇β ], [Qα, pβν ] and [Qα, pβν†] commute with every function of
the Qα and Qα,ν .

3. We have

(27) [Qα, pβν ] = [Qα, pβν†].

As a consequence instead of (23) and (24) we can write

(28)
∑

cσ···τ
αr Pαν = 0,

(29) Fr ≡ c4···4
αr Pα = 0.

From (25) it follows that the N linear equations

(21) AαβQ̇β + Q̇βAβα = 2(Pα −Dα),

are not independent, rather, the determinant |Aαβ | has the rank N−r0.[9] Since
it is symmetric there exists a nonvanishing principal minor of degree N − r0; we
will denote the corresponding indices with a prime:

|Aα′β′ | �= 0,

while the remaining indices will be doubly primed: µ′′, ν′′, · · · . The determinant
|Aα′β′ | as well as its inverse |Aα′β′ | are symmetric, and we have

(30) Aα′β′Aβ′γ′ = δα′
γ′ ,

where as usual δα
γ equals 0 or 1 accordingly as α �= β or α = β.

If we succeed in finding a special solution Q̇0
β(Q,P) of (21), then the general

solution has the form:
Q̇β = Q̇0

β + λrxβr,

where the λr are r0 arbitrary parameters and the xβr represent r0 independent
solutions of the homogeneous equations

Aαβxβr + xβrAβα = 0.

According to (25) we can now choose

xβr = c4···4
βr

and write

(31) Q̇β = Q̇0
β + λrc4···4

βr ,

Furthermore I maintain that

(32)

{
Q̇0

β′ = 1
2

{
Aβ′γ′(Pγ′ −Dγ′

) + (Pγ′ −Dγ′
)Aγ′β′

}
Q̇0

β′′ = 0.

9



is a special solution of (21). If this is verified, then we have actually suc-
ceeded in solving (21) for the Q̇β : the solution (31) manifestly has the required
property since by virtue of the canonical commutation relations [Qα, Q̇β ] is an
anti-Hermitian function of the Qα and Qα,µ.

Substituting (32) into the left hand side of (21), [10] which for the moment
we will call Tα one obtains

T α =
1
2
Aαβ′ {Aβ′γ′(Pγ′ −Dγ′

) + (Pγ′ −Dγ′
)Aγ′β′

}
+

1
2

{
Aβ′γ′(Pγ′ −Dγ′

) + (Pγ′ −Dγ′
)Aγ′β′

}
Aβ′α

= Aαβ′Aβ′γ′(Pγ′ −Dγ′
) + (Pγ′ −Dγ′

)Aγ′β′Aβ′α

+
1
2
Aαβ′

[Pγ′ −Dγ′
,Aγ′β′ ] +

1
2
[Aβ′γ′ ,Pγ′ −Dγ′

]Aβ′α

= Aαβ′Aβ′γ′(Pγ′ −Dγ′
) + (Pγ′ −Dγ′

)Aγ′β′Aβ′α

by virtue of the second implication of our assumption.[11] For α = α′ we imme-
diately deduce from (30)

T α′
= 2(Pα′ −Dα′

).

Now according to the theory of linear equations and using our assumption re-
garding [Qα, Q̇β ] the identities (29) are equivalent to

Pα′′
= Aα′′β′Aβ′γ′Pγ′

,

and in the same manner (26) is equivalent to

Dα′′
= Aα′′β′Aβ′γ′Dγ′

.

It follows that also
T α′′

= 2(Pα′′ −Dα′′
),

whereby the proof is completed that (31), (32) represent the most general solu-
tion of (21) in agreement with the canonical commutation relations.[12]

§4. Construction of the Hamiltonian

Classically the Hamiltonian reads

H = PαQ̇α − L;

in every quantum mechanical approach we must demand that

(33)
∂H

∂Qα,ν
= − ∂L

∂Qα,ν
,

a property that will prove itself unavoidable in the elaboration of the theory.[13]

10



We have (
∂L

∂Qα,ν

)
Pα

=
(

∂L
∂Qα,ν

)
Q̇α

+

(
∂Q̇β

∂Qα,ν

)
Pα

pβ

and since according to (31 and (32),
(

∂Q̇β

∂Qα,ν

)
Pα

does not contain the Pα we
can write (

∂L
∂Qα,ν

)
Pα

=
(

∂L
∂Qα,ν

)
Q̇α

+

(
∂Q̇β

∂Qα,ν

)
Pα

Pβ

The Ansatz

(34) H = Q̇αPα − L.

therefore satisfies the condition (33). Since by (25) and (26)

L[Q; Q̇(Q,P, λ)] = L(Q, Q̇0),

using the notation (29) we can write

(35) H = H0 + λrFr,

with [14]

(36) H0 = Q̇0
αPα − L[Q, Q̇0(Q,P)].

Now we fix the canonical commutation relations

(37)
{

[Qα(r), Qβ(r′)] = [Pα(r),Pβ(r′)] = 0,
[Pα(r), Qβ(r′)] = ωδα

β δ(r − r′), ω = hc
2πi ,

as well as the field equations [15]

[H, Qα] = ωQ̇α,

(38) [H,Pα] = ωṖα,

where we use the notation

(39) A ≡
∫

Adx1dx2dx3;

the integration domain must be chosen in such a manner that field quantities
assume a constant value on the boundary, indeed, such values that L vanishes
there. [16]

In addition to (37) and (38) we have the proper identities (29) Fr = 0 as
constraints. But it must be proven that it is permissible to set all of the Fr

11



simultaneously to zero; in other words, that the Fr commute with each other,
at least on account of the constraints Fr = 0 themselves.

The following observations will serve not only this purpose, but are also the
basis for the proof of covariance to be adduced later on.

We define first the energy-momentum pseudo tensor 12

(40) Gν
µ = PανQα,µ − δν

µL,

and then energy-momentum pseudo density

(41) Gµ = G4
µ = PαQα,µ − δ4

µL,

whose fourth pseudo component is the Hamiltonian function (34):

H = G4 = G4
4 .

The components of the total momentum are then Gν and the total energy is
H.

The CR (commutation relations) of H with the Qα,Pα are given by (38).
Concerning the Gµ we first find referring to (37) that

(42)

{
[Gν(r), Qα(r′)] = ω ∂Qα

∂xν δ(r − r′),
[Gν(r),Pα(r′)] = −ωPα ∂δ(r−r′)

∂xν ,

so that
[Gν ,Φ(Q,P)] = ω

dΦ
dxν

,

and therefore more generally,

(43) ω
dΦ
dxν

= [Gµ,Φ(Q,P, x)] + ω
∂Φ
∂xν

,

from which it follows immediately that [17]

(44) [Gµ,Gν ] = 0 :

this constitutes an expression for the commutability of the derivatives d
dxν whose

physical content is the constancy in time of the Gµ that follows from equations
(38) , (37). 13

§5. Quantum-mechanical expression of the infinitesimal
transformation group

In this paragraph we prove the the proposition: [18]

(45) ωδ∗Φ(Q,P) = [M,Φ],
12The prefix“pseudo” signifies that the relevant quantity is not a tensor.
13In case the λr contain the x4 explicitly, (44) holds based on the constraints (29).
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where

(46) M = PαδQα − Gµδxµ.

This should hold on account of the field equations (38) and the CR (31), under
the assumption that L is a scalar density.

To prove this proposition it will suffice to show that

(47)
{

ωδ∗Qα = [M, Qα],
ωδ∗Pα = [M,Pα].

According to (37) and (42), considering that by (2) δQα contains only the Qα

(and not the Pα),

[M, Qα] = ωδQα − dQα

dxµ
δxµ − [δx4H, Qα].

Now according to H. P. I, equation (20),

(48)

⎧⎪⎪⎨⎪⎪⎩
[δx4H, Qα] = ω ∂(δx4H)

∂Pα = δx4[H, Qα],
[δx4H,Pα] = −ω

{
∂(δx4H)

∂Qα
− d

dxν

∂(δx4H)
∂Qα,ν

}
= δx4[H,Pα] + ω dδx4

dxν
∂H

∂Qα,ν
.

The first relation (47) therefore follows referring to (4), using the first field
equation (38).

Similarly, referring to the second field equation (38) and equation (33) [19]

(49)

⎧⎪⎪⎨⎪⎪⎩
1
ω [M,Pα] = −Pβ ∂δQβ

∂Qα
− d

dxν (Pαδxν)

−dPα

dx4 δx4 + Pαν dδx4

dxν ,

= −Pβ ∂δQβ

∂Qα
+ Pαν dδx4

dxν − d
dxν (Pαδxν).

It remains only to show that the right hand side of (49) is equal to δ∗Pα.
We therefore calculate δPα directly, or more generally δPαν . First we have [20]

(50) δPαν = δ

(
∂L

∂Qα,ν

)
=

∂(δL)
∂Qα,ν

− ∂L
∂Qβ,µ

∂δQβ,µ

∂Qα,ν
,

for general c-numbers, and for q-numbers whenever L has the form (1) and
∂δQβ,µ

∂Qα,ν
does not contain the Q̇α (respectively, the Pα). The latter is true in our

case according to the formula (6) that gives

∂

∂Qα,ν
δQβ,µ =

∂

∂Qα,ν

{
d

dxµ
δQβ − Qβ,ρ

dδxρ

dxµ

}
=

∂δQβ

∂Qα
δν
µ − dδxν

dxµ
δα
β .

13



Substituting this into (50) yields

δPαν = −Pβν ∂δQβ

∂Qα
+ Pαµ dδxν

dxµ
+

∂(δL)
∂Qα,ν

;

now using (13) we have

(51) δPαν = −Pβν ∂δQβ

∂Qα
+ Pαµ dδxν

dxµ
− Pαν dδxµ

dxµ
;

i.e., as the comparison with (11) instructs us: Pαν is a tensor density. From (51)
with reference to (4) the expression (49) follows immediately for δ∗Pα ≡ δ∗Pα4.
The formula (45) is hereby proven.

§6. The Fr as special infinitesimal transformations

We consider a fixed but arbitrary slice x4 = x4
0. On this slice we consider the

transformations of our group (2) that are defined through the conditions

(52)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(ξr)x4=x4

0
=
(

∂ξr

∂xσ

)
x4=x4

0

= · · · =
(

∂j−1ξr

∂xσ···∂xτ

)
x4=x4

0

= 0,(
∂jξr

∂xσ···∂xτ

)
x4=x4

0

= 0,when all of the σ · · · τ are not equal to 4,(
∂jξr

(∂x4)j

)
x4=x4

0

= εr,

where the εr are arbitrary spatial functions.
On account of the assumption (3) these transformations do not lead out of

the x4 = x4
0 slice. They constitute at every point in the slice a finite continuous

subgroup of the group (2), whose infinitesimal transformations are given by [21]

ωδ′Φ(Q,P) = [εrFr,Φ].

(The Q,P,F are hereby taken at x4 = x4
0.)

The second fundamental proposition of Lie on finite transformation groups
declares when applied to this subgroup that at every point of the slice

[Fr, [Fs,Φ]] − [Fs, [Fr,Φ]] = ct
rs[Ft,Φ],

where the ct
rs are the point (x1, x2, x3, x4

0) dependent group “structure con-
stants”. By the Jacobi bracket identity the left hand side is simply equal to

[[Fs,Fr],Φ] ;

we therefore obtain [22]

(53) [Fs,Fr] = ct
rsFt.

From here follows an additional fact required in the establishment of the
method presented in section 4. Since Fr = 0 the Fr must commute with each
other.
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§7. The infinitesimal transformations M as integrals of the
motion

Let us return for the moment to the pure c-number theory. We set

(54) Mν = PανδQα − Gν
µδxµ,

and

(55) Lα =
∂L

∂Qα
− d

dxν

∂L
∂Qα,ν

,

so as is easy to see that the assumption (13) is equivalent to [23]

(56c)
dMν

dxν
+ Lαδ∗Qα = 0;

taking into account that according to (46) and (54)

M ≡ M4

and using the notation (39) we have [24]

dMν

dxν
= 0,

then it follows from (56c) that

(57c)
dM
dx4

= −Lαδ∗Qα.

Now it is well known that the Hamiltonian equations (38) (by virtue of the
proper identities (29)) are equivalent to the Lagrangian equations

Lα = 0.

Consequently by (57c), based on (13) and (38),

(58)
dM
dx4

= 0.

Equation (56c) cannot be carried over to q-numbers. Nevertheless the deriva-
tion of (56c) succeeds through use of the same assumptions (13) and (38), only
under somewhat different circumstances. Both relations (13) and (38) were es-
sential in the derivation of (43) and (45). Let us apply these latter results to
the identity (5), whereby we let Φ depend only on Q and P: [25]

[
M, [Gν ,Φ]

]
=
[
Gν , [M,Φ]

]
+
[
ω

∂M
∂xν

,Φ
]

,

[
[Gν ,M] + ω

∂M
∂xν

,Φ
]

= 0
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using the Jacobian identity, or finally[
dM
dxν

,Φ
]

= 0.

In particular dM
dx4 is c-number (generally dependent on x4). But this c-number,

as a sum of manifest q-numbers, can be nothing other than zero. This conclusion
is confirmed through a careful calculation of dM

dx4 .
Interesting conclusions regarding the relation between M and the functions

Fr can be drawn from (58). Under integration by parts M takes the form

(59) M =
∫

dx1dx2dx3

i=j∑
i=0

Nr
i ∂iξr

(∂x4)i
,

where

(60) Nr
j ≡ Fr.

Equation (58) is then written as follows:∫
dx1dx2dx3

i=j∑
i=0

Nr
i ∂i+1ξr

(∂x4)i+1
= −

∫
dx1dx2dx3

i=j∑
i=0

dNr
i

dx4

∂iξr

(∂x4)i
.

It follows through comparison of coefficients that

(61) Nr
i = −dNr

i+1

dx4
(i = 0, 1, · · · , j − 1),

and

(62) Nr
j = 0,

dNr
0

dx4
= 0.

(60) and (61) then yield

(63) Nr
i = (−1)j−i dj−iFr

(dx4)j−i
(i = 0, 1, · · · , j),

and M therefore assumes the remarkable form

(63′) M =
∫

dx1dx2dx3

i=j∑
i=0

(−1)j−i dj−iFr

(dx4)j−i

∂iξr

(∂x4)i
.

The first identity (62) is according (60) trivially Fr = 0, The second shows,
however, that on account of the field equations and the identities (29)

(64)
dj+1Fr

(dx4)j+1
= 0.
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This provides the answer to the question to what extent differentiation of the
constraints (29) yields new constraints. [26]

If in particular j = 1, then the only new equations are dFr

dx4 = 0, i.e.,

[H,Fr] + ω
∂Fr

∂x4
= 0.

If the Lagrangian is of the form (1), i.e., if (35) holds, then referring to (53) this
last equation becomes

[H0,Fr] + ω
∂Fr

∂x4
+ ct

rsλ
sFt = 0,

or since Fr = 0

[H0,Fr] + ω
∂Fr

∂x4
= 0;

since neither the constraints or the new equations contain the λr they remain
essentially undetermined. (However, in case j > 1 then already the d2Fr

(dx4)2

contain the λr.) [27] As a consequence of the essential indeterminateness of the
λr, r0 field equations of the form

ωṖα = [H,Pα]

are missing. [28] The equations

Nr
0 ≡ dFr

dx4
= 0, i.e. [H0,Fr] + ω

∂Fr

∂x4
= 0

just suffice as a replacement. [29]
In the case j = 0 the missing field equations are replaced by the identities

Fr = 0 themselves, which according to (64), i.e., dFr

dx4 = 0, evolve in time.
We want to make one last observation with regard to the formula (63′). We

inquire into the subgroup of our group that leaves all of the points of the slice
x4 = x4

0 invariant; this group is manifestly a normal subgroup. The conditions

δxν = 0 for x4 = x4
0

imply that

(ξr)x4=x4
0

=
(

∂ξr

∂xσ

)
x4=x4

0

= · · · =
[

∂kξr

∂xσ · · · ∂xτ

]
x4=x4

0

= 0;

the infinitesimal transformation then reads, referring to (63′)

(65) S =
∫

dx1dx2dx3

i=j∑
i=k+1

(−1)j−i dj−iFr

(dx4)j−i
si

r,

where dj−iFr

(dx4)j−i is taken at x4 = x4
0 and the

si
r ≡

[
∂iξr

(∂x4)i

]
x4=x4

0
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are arbitrary spatial functions.[30] The group S is at every point of the slice a
r0(j − k)parametric invariant subgroup. The group (52) considered in section 6
is a subgroup of this group.

§8. Covariance of the procedure under the group action

Using the results just obtained we are now in position to easily settle the question
whether the procedure is covariant.

The formula (45) implies that for an arbitrary group transformation every
functional Φ(Q,P) is subject to a similarity transformation of the form

(66) Φ′ = S−1ΦS

where according to (58) S is time independent.
Furthermore, as is easy to see 14 that formula (45) is also true for infinitesimal

transformations N of the group, i.e., when all of the field quantities are subject
to the infinitesimal transformation M,

(67) ωδ∗N = [M,N ],

hence, more generally,

(67′) N ′
= S−1NS.

From (66) the covariance of the CR (37) follows immediately. According to
(35) the Hamiltonian consists of a Q and P dependent functional H0 and a term
λrFr that according to section 6 represents a special infinitesimal transformation
N . On account of (66) and (67′) the canonical field equations are also subject
to a (constant in time) unitary transformation, under which, as is well known,
they remain invariant.

All that remains to investigate is the variation of the left hand sides Fr of
the identities (29). According to (67) they vary as

(68) ωδ∗Fr = [M,Fr].

14If one replaces Φ in

Φ′ = Φ +
1

ω
[N , Φ]

by

Φ̃ = Φ +
1

ω
[M, Φ]

and Φ′ by

Φ̃′ = Φ′ +
1

ω
[M, Φ′]

then it follows after an easy calculation that

Φ̃′ = Φ̃ +
1

ω

»
N +

1

ω
[M,N ], Φ̃

–
,

cf. also E. Noether, Gött. Nach. 1918, p. 252. [31]
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Thus it follows from the fact that the group S defined in (65) is an invariant
subgroup, [32]

(68′) [M,Fr] =
i=j∑

i=k+1

αrs
i

dj−iFs

(dx4)j−i
.

According to (68) and (68′) we therefore have δ∗Fr = 0, i.e., the proper identities
Fr = 0 are invariant, due indeed to the identities themselves and possible time
derivatives thereof.

§9. Extension of the theory to the “second case” of section
1

We indicate briefly how the theory above is extended to the “second case”
defined in section 1.

Our group would then have the simple form:

δxν = 0,

(69) δQα = cαrξ
r.

With

(14) L′ ≡ d

dxν
[fν,αρ(Q)Qα,ρ]

we have according to (12)

(70) δ(L + L′) = 0.

1. Next we calculate δL′. I maintain that δL′ takes the form

(71) δL′ =
d

dxν

(
RανδQα

)
or

(72) δL′ =
d

dxν
(Iν

r ξr) .

We obtain first

δL′ =
d

dxν

{
∂fν,αρ

∂Qβ
cβrξ

rQα,ρ + fν,αρ d(cαrξ
r)

dxρ

}
;

we set

(73) rαν = −dfν,αρ

dxρ
+ Qβ,ρ

∂fν,βρ

∂Qα
,
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and

(74) Ir
ν = rανcαr,

so we have

(75) δL′ =
d

dxν

{
Ir

νξr +
d

dxρ
(fν,αρcαrξ

r)
}

.

Now we use (70) and write out the requirement that the coefficients of the
second derivatives of the ξr vanish identically. Since L contains no second
derivatives of the ξr, we have according to (75)

(76) (fν,αρ + fρ,αν)cαr ≡ 0.

As a consequence (75) is reduced to

δL′ =
d

dxν
(Ir

νξr).

Now we set

(77) Rαν = rαν

and notice that instead of (74) we can also write

(74) Ir
ν = Rανcαr,

thus we have proven formulas (71) and (72).
2. Now we set up the analogues of the identities (28) that in the first case

contain the proper identities (29). For that purpose we must simply set the
coefficients of the dξr

dxν in (70) equal to zero. We obtain

(78) (Pαν + Rαν)cαr = 0.

In particular for ν = 4 :

(Pα + Rα4)cαr = 0,

or, once again substituting

Fr = Pαcαr and Ir
4 = Ir,

(79) Fr + Ir = 0.

3. The identities (79) are proper, i.e., we have

(80)
∂Ir

∂Q̇α

= 0.
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More generally we wish to prove that instead of (80)

(80′)
∂(rβρcβr)

∂Qα,ν
= −∂(rβνcβr)

∂Qα,ρ
,

from which (80) follows from (74) when ν = ρ = 4.
For this purpose we set equal to zero the coefficients of ξr in (70): there

is one in the term linear in the second derivative Qα,ρν , with only Q depen-
dent coefficients. Since this expression vanishes for arbitrary Qα,ρν , we can
in particular assign c-number values to the Qα,ρν and then separately set to
zero the coefficients of the Qα,ρν . Using the formula that is valid for arbitrary
Kρ(Qα;Qα,ν):

(81)
∂

∂Qα,ν

d

dxρ
Kρ(Qα;Qα,ν) =

∂Kν

∂Qα
+

d

dxρ

∂Kρ

∂Qα,ν
,

we find for these coefficients according to (71 and (73) [33]

∂(rβρcβr)
∂Qα,ν

+
∂(rβνcβr)

∂Qα,ρ
;

setting this expression equal to zero gives (80′).
According to (81) it follows furthermore from (73) that [34]

(82)
∂rαν

∂Qβ,ρ
=

∂fν,βρ

∂Qα
− ∂fν,αρ

∂Qβ
=

∂Rαν

∂Qβ,ρ
;

therefore instead of (80′) we can write

(83)
∂(Rβρcβr)

∂Qα,ν
= −∂(Rβνcβr)

∂Qα,ρ
.

4. The calculations of sections 3 and 4 can be applied word for word to the
present case with Pα + Rα4 taking the role of Pα.

The derived expression M for infinitesimal transformations undergoes an
analogous modification since Pαν is no longer a tensor density. 15

Rather, we have according to (50) and (70)

δPαν = −Pβν ∂δQβ

∂Qα
− ∂(δL′)

∂Qα,ν
;

but by (71), referring to (81),

∂(δL′)
∂Qα,ν

=
∂(RβνδQβ)

∂Qα
+

d

dxρ

∂(RβρδQβ)
∂Qα,ν

,

15Although neither Pαν nor Rαν are tensor densities, it is easy to show that Pαν +Rαν is
a tensor density.
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i.e., taking (83) into account

(84) δPαν = −Pβν ∂δQβ

∂Qα
− ∂(RβνδQβ)

∂Qα
+

d

dxρ

∂(RβνδQβ)
∂Qα,ρ

.

In particular due to (80), for ν = 4 this becomes [35]

δPα = −Pβ ∂δQβ

∂Qα
− ∂(Rβ4δQβ)

∂Qα
+

d

dxρ

∂(Rβ4δQβ)
∂Qα,ρ

,

i.e.,

(85) ωδPα = [N ,Pα],

with

(86) N = (Pα + Rα4)δQα.

Once again on account of (80) we also have [36]

(87) ωδQα = [N , Qα],

so that we have in N the desired extension of M.
From expression (86) it follows exactly as in section 6 that the left hand

sides Fr +Ir of the proper identities commute as a consequence of the identities
themselves.

The considerations of section 7 concerning the constancy in time of the M as
well as the proof of covariance of section 8 can be carried over without change to
N . In particular, since it is assumed here that j = 0, the identities Fr + Ir = 0
play the role of the missing field equations.

§10. Observations concerning the simultaneous treatment
of multiple groups

In case the Lagrangian admits several groups the above theory is still appli-
cable considering that the infinitesimal transformation of the direct product of
the relevant groups consists of the sum of infinitesimal transformations of the
individual groups. In particular the Fr of each individual group commute not
only with each other (due to Fr = 0), but also with the Fr belonging to other
groups. It is also permissible that “case 1” (L is a density ) may apply to some
groups, and “case 2” treated in section 9 may apply to others. For the latter
case we must simply replace the Fr by Fr + Ir; these once again commute not
only among themselves but also with the remaining Fr.

It follows from this observation that one may treat independently the indi-
vidual groups admitted by the Lagrangian.
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Part Two: Applications

§11. The Lagrangian

We wish to construct a Lagrangian that includes not only electromagnetic and
material fields, but also the gravitational field. Concerning the latter, we will
adopt the one-body theory proposed by Fock 16 and Weyl 17: we describe the
gravitational field through the introduction at every point of four orthogonal
vectors hi,ν , (i = 1, 2, 3, 4) and we demand that the laws of nature be co-
variant under x-dependent Lorentz transformations of the “Vierbeine” . [37]
This covariance, called “Beincovariance” by Levi Civita 18 is fundamentally
different from the “local Bein covariance” demanded by the Einsteinian the-
ory of Fernparallelismus in which all of the tetrads are rigidly linked (constant
Lorentz transformations of the tetrads). In agreement with Fock (and contrary
to Weyl) we describe the material field through a four-component wave func-
tion ψ ≡ (ψ1, ψ2, ψ3, ψ4). For the electromagnetic field we select as variables
the components φµ of the four-potential. 19

The Lagrangian is constructed additively out of three parts that correspond
to the three designated fields (and simultaneously contain the field interactions).

Letting

(88) Eµν =
∂φν

∂xµ
− ∂φµ

∂xν

represent the electromagnetic field tensor, then the radiation term in the La-
grangian is [39]

(89) E =
1
4
EµνEµν ,

where we define
Eµν = Eµνh′,

where h′ is the determinant of hi,ν and the Eµν are the contravariant compo-
nents of the tensor Eµν .

In order to construct the matter term we fix a special system of Pauli ma-
trices 20

(90) ρ1 =
(

i 0
0 −i

)
, ρ2 =

(
0 i
i 0

)
, ρ3 =

(
0 −1
1 0

)
.

Thus let us set

(91)

⎧⎨⎩ αl = −i

(
ρl 0
0 −ρl

)
(l = 1, 2, 3),

α4 = 1.

16V. Fock, Zeit. f. Phys. 57, p. 261, (1930)
17H. Weyl, Zeit. f. Phys. 56, p. 330, (1929)
18Berliner Berichte 1929, p. 137.
19Since we have set x4 = ct we have φ4 = −φ, where φ represents the scalar potential. [38]
20They differ from the Fock matrices only slightly. The essentially different feature of the

specialization is σ4 = 1 (In Fock’s notation σ0 = 1).
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We now introduce the notation

(92) ek = −1, e4 = 1,

so the matrices αi are Hermitian and they have the commutation property

(93) αmαkek + αkαmem = 2emδmk.

We still need the matrix

(94) σ =
(

0 1
1 0

)
,

(where the ones represent two-row identity matrices). [40]
With regard to the latin indices a sum over doubly repeated indices is un-

derstood, whereby the factor ek is to be ignored when counting the number
of indices. In addition to the hi,ν the contravariant hi

ν also appear, and they
satisfy the relations [41]

(95)
{

hν
khl,ν = ekδkl,

ekhν
khk,µ = δν

µ,

which express the orthogonality of the tetrads in the space with metric [42]

(96) gµν = ekhk,µhk,ν .

Defining

(97) ηl
ρσ =

∂hl,ρ

∂xσ
− ∂hl,σ

∂xρ
,

and

(98) 2γmkl = (ηl
ρσhσ

mhρ
k + ηm

ρσhσ
l hρ

k + ηk
ρσhσ

mhρ
l )h

′, [43]

(99) Cl =
1
4
ekαmαkγmkl +

e

ω
φσhσ

l h′, (ω =
hc

2πi
), [44]

and finally [45]

(100) γσ = ekαkhσ
kh′,

then the matter term in the Lagrangian reads [46]

(101) �ωψ∗
(

γσ ∂ψ

∂xσ
− elαlClψ

)
− mc2ψ∗σψh′.

(x∗ is the complex conjugate of x. �x is the real part of x. �x is the imaginary
part of x.)
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Now we have (cf. Fock, loc. cit., formula (24)),

el(αlCl + C†
l αl) = −∂γσ

∂xσ
,

and consequently

(102) �ωψ∗
(

γσ ∂ψ

∂xσ
− elαlClψ

)
=

ω

2
∂

∂xσ
(ψ∗γσψ).

We can therefore take as the matter term [47]

(103) W = ωψ∗
(

γσ ∂ψ

∂xσ
− elαlClψ

)
− mc2ψ∗σψh′,

instead of (101).
For the gravitational part we take 1

2χG, where χ = 8πf
c2 (f = Newton’s

gravitational constant) and [48]
(104)

G = ekelη
l
ρσhρ

l h
ρ′
k gσσ′

h′ηk
ρ′σ′−

1
2
ekelη

l
ρσhρ′

l hρ
kgσσ′

h′ηk
ρ′σ′−

1
4
elη

l
ρσgσσ′

gρρ′
h′ηl

ρ′σ′ ;

as is easily checked (cf. eg. Weyl, loc. cit.) that G differs from scalar curvature
density R by a divergence

(105) R = G − 2
d

dxν

(
elh

ν
l

∂(hσ
l h′)

∂xσ

)
.

Altogether we have therefore

(106) L =
1
2χ

G + E + W.

In contrast to the usual form of relativity theory where the field quantities
gµν were not vectors but were rather second rank tensors, the two constituent

parts G and 2 d
dxν

(
elh

ν
l

∂(hσ
l h′)

∂xσ

)
of R in (105) are scalar densities under the

general relativistic transformation group. On the other hand G is not by itself
gauge invariant, but R is. [49]

§12. The gauge invariance group

The simplest group admitted by our function L is the gauge invariance group
for which the xν and the hl,ν remain invariant while the φν and ψ transform as
follows [50]

(107)
{

δφν = ∂ξ
∂xν ,

δψ = − e
ω ξψ.

Under this group δL = 0.
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In order to ease the comparison with the general theory we set 21

φν = Qν , ψ = Q5,

so that we have
cµ
ν = δµ

ν , cµ
5 = 0

with the single resulting identity

(108) P4 = 0.

This follows directly from the explicit calculation of the Pαν :

(109)
{

Pµν = Eνµ,
P5ν = ωψ∗γν .

In order to discuss this simple example further we first disregard gravitation,
i.e., we set hi,ν = δi,ν . [76]

The Hamiltonian then takes the form

(110) H = H0 + λP4,

where H0 is for example the special Hamiltonian function selected in H. P. II
that does not contain P4. [52]

The field equations read [53]

(111)

⎧⎨⎩
ωQ̇ν = [H0, Qν ],

Q̇4 = λ,

ωQ̇5 = [H0, Q5];

(112) ωṖα = [H0,Pα], (α = 1, · · · , 5);

Since we also have j = 1 we have a constraint 22 besides (108) [54]

(113) [H0,P4] = 0.

So λ in (111) remains fundamentally undetermined and the fourth equation
(112) is replaced by (113).

The infinitesimal transformation M reads here:

M =
∫ {

∂ξ

∂xν
E4ν − eξψ∗γ4ψ

}
dx1dx2dx3,

or through integration by parts

M =
∫ {

∂ξ

∂x4
P4 − ξ

[
∂E4ν

∂xν
+ eψ∗γ4ψ

]}
dx1dx2dx3,

21Since the ψ are not Hermitian it is necessary to make some small modifications in order
to adapt these variables to the formalism. The is no need to go into these details here.

22In the notation of H. P. II (113) reads C = 0.
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The square bracket is nothing other than 1
ω [H0,P4], or Ṗ4, so that

(114) M =
∫ {

∂ξ

∂x4
P4 − ξ

dP4

dx4

}
dx1dx2dx3,

in agreement with (63′).
According to the general theory P4 = 0 must hold due to the field equations

and the identities; this is in fact the continuity equation of electricity. [55]

§13. General relativistic covariance

For an arbitrary coordinate transformation [56]

(115) δxν = ξν ,

(115′) δhl,ν = −hl,µ
∂ξµ

∂xν
,

and

(115′′)
{

δφν = −φµ
∂ξµ

∂xν ,
δψ = 0.

The Lagrangian behaves as a scalar density under this transformation. [57]
We retain the notation of the previous paragraphs for the momenta conjugate

to φν and ψ, and we represent the momenta Pαν conjugate to the hl,ν by Pνµ
l

So the inproper identities (28) read in the present case

φρ(Eµν + Eνµ) + hi,ρ(Pνµ
i + Pµν

i ) = 0;

taking into account that Eµν + Eνµ = 0 they reduce to [58]

(116) Pνµ
i + Pµν

i = 0,

and we thus follow the four proper identities

(117) P4
l = 0.

The direct calculation in fact gives (116) since G and R depend on the hi,ν,µ

only through the ηi
τσ and

∂ηi
ρσ

∂hi,ν,µ
= δµ

ρ δν
σ − δν

ρδµ
σ ,

i.e., is antisymmetric in µ and ν. One finds [59] [60]

(118)

⎧⎪⎨⎪⎩
Pνµ

i = ηi
ρσgνσgµρ + elη

l
ρσ(gσµhν

i − gσνhµ
i )

−elη
l
ρσhρ

i (h
ν
l gσµ − hµ

l gσν)eih
′ 1
2χ

−�ω
4 ψ∗αlαmαkψelek

∂γmkl

∂hi,ν,µ
,
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The infinitesimal transformation M takes the form [61]

M = −
∫

dx1dx2dx3

{
∂ξµ

∂x4
(hi,µP4

i + φµP4) − ξµ

[
∂

∂xν
(hi,µPν

i + φµPν) + Gµ

]}
;

le t us consider in particular the translation ξµ = εµ = const so that dM
dx4 = 0

yields the energy-momentum conservation law

Gµ = const;

For a linear transformation we derive from M the generalization of the angular
momentum conservation law (cf. H. P. II, p. 177).

According to the general theory (section 7) the setting of the coefficients of
ξµ equal to zero yields a constraint

(119) Gµ +
∂

∂xν
(hi,µPν

i + φµPν) = 0.

F. Klein 23 has already shown in another context that (119) is equivalent to the
four field equations.

§14. The true Beincovariance

For this group we have [62]

δxν = 0, δφµ = 0,

(120) δhi,ν = ekξikhk,ν , (ξik = −ξki),

and based on (120) it is easy to show that [63]

(120′) δψ =
1
4
ekξikαiαkψ.

We have here an example of the “second case” treated in section 9, since G
is only locally invariant and only R is truly Beininvariant; M and E are also
true Beininvariants]].

For the purpose of calculating formula (74), Iµ
r ≡ Iµ

(ik), it will be useful to
temporarily select as a variable

Qα
l ≡ h′hα

l .

Then according to (105) [64]

fν,αρ
l = − 1

χ
elh

ν
l δα

ρ ,

23Gött. Nach. 1918, p. 185
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and according to (120) [65]

cl,α(ik) = δilekhα
k h′ − δkleih

α
i h′.

Referring now to (71) one easily finds that [66]

(121) Iν
(ik) =

1
χ

eiek
d

dxρ
(h′hν

i hρ
k − h′hρ

i h
ν
k).

To calculate Fr ≡ F(ik) it will be convenient to return to the original vari-
ables Ql,α ≡ hl,α and Q5 = ψ. Then we have [67]

cl,α(ik) = δilekhk,α − δkleihi,α,

and in addition, by (120′), we set [68]

c5(ik) =
1
4
(ekαiαkψ − eiαkαiψ).

We have accordingly [69]

F(ik) = Pν
i ekhk,ν − Pν

k eihi,ν +
ω

4
ekelh

′h4
l ψ

∗(αlαiαk − αlαkαi)ψ.

Now according to (98)

∂γmjl

∂hi,ν,4
ekhk,ν − ∂γmjl

∂hk,ν,4
eihi,ν = h′h4

l (δimδkj − δijδkm);

then according to (118) we set

(122) Pν
i = P̃ν

i −�ω

4
elψ

∗αlαmαjψej
∂γmjl

hi,ν,4
,

where P̃ν
i represents the momentum in the absence of matter. Then the F(ik)

simplifies, as it must, to

(123) F(ik) = P̃ν
i ekhk,ν − P̃ν

k eihi,ν .

According to (121) and (123) the six proper identities read

(124) P̃ν
i ekhk,ν − P̃ν

k eihi,ν +
1
χ

eiek
d

dxρ
(h′h4

i h
ρ
k − h′hρ

i h
4
k) = 0,

which can also be obtained directly from (118).

§15. Supplementary observations on the gravitational and
matter fields

1. After having sketched in the previous paragraphs how the Fock-Weyl one-
body theory can be quantized, we would like to briefly address a point that is
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treated differently by Fock and by Weyl, namely the construction of the energy-
momentum tensor Ti

ν of matter. The Fock approach leads to a non-symmetric
tensor and seems for our purposes to be inappropriate. We prefer the Weyl
definition [70]

(125c) Ti
ν =

δW
δhi,ν

that based on the equations of motion gives a symmetric tensor. However, since
Fock works with a two-component ψ while we want to stay with Weyl’s four-
component theory, it would not be redundant to repeat here mutatis mutandis
the Weyl calculation of Ti

ν .
The symmetry of Ti

ν follows immediately from δW = 0, where δ is the
variation (120), (120’), for it follows from setting to zero the coefficients of ξ(ik)

that [71]

Ti
νekhk,ν − Tk

νeihi,ν = −1
2
�δW

δψ
(ekαiαk − eiαkαi)ψ,

i.e., [72]
Ti

νekhk,ν − Tk
νeihi,ν = 0

using the field equations

δW
δψ

= 0 and
δW
δψ∗ = 0.

This equation expresses the fact that the tensor [73]

T ′′
ik = eiekT ν

i hk,ν

is symmetric under the interchange of i and k.
Instead of (125c) we can just as well set

(126c) Ti
ν =

δ�W
δhi,ν

,

which gives us a real tensor Ti
ν . It is more convenient to calculate [74]

(127c) T ′
i,ν =

δ�W
δhν

i

= −ekhk,νhk,ρT ρ
k ≡ eih

′Ti,ν

Based on (103) we find [75]

(128c)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
T ′

i,ν = �ωψ∗αi
∂ψ
∂xν − eψ∗αiψφν − hi,νW

+�ω
4 ekhρ

khm,ν
∂

∂xρ {ψ∗αiαmαkψ}
−�ω

4 eielekψ∗αlαmαkψ
{

∂γmkl

∂hν
i

− ∂
∂xρ

∂γmkl

∂hν
i,ρ

}
,

with W = 1
h′W.
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We confine ourselves now to special relativity in setting [76]

hν
i = eihi,ν = δiν .

Then (128c) becomes 24 [77]

(129c) T ′
i,ν = �ωψ∗αi

∂ψ

∂xν
− δiνW − eψ∗αiψφν + �ω

4
eρeν

∂

∂xρ
(ψ∗αiαναρψ),

with
W = �ωeρψ

∗αρ
∂ψ

∂xρ
− mc2ψ∗σψ − eρeψ

∗αρφρ.

In particular we then have [78]

T ′
44 = �ωψ∗αρ

∂ψ

∂xρ
− eψ∗αρψφρ + mc2ψ∗σψ,

i.e., the energy operator is [79]

(130c) H = αρ

(
h

2πi

∂

∂xρ
− e

c
φρ

)
+ mcσ,

In addition we have [80]

T ′
4ν = �ωψ∗ ∂ψ

∂xν
− cψ∗ψφν + �ω

4
∂

∂xρ
(ψ∗αναρψ);

we set

(131) α1α2 = µ3,

for cyclical permutations of the indices {ijk}, then we have for example

T ′
41 = �ωψ∗ ∂ψ

∂x1
− eψ∗ψφ1 +

ω

4

{
∂

∂x2
(ψ∗µ3ψ) − ∂

∂x3
(ψ∗µ2ψ)

}
.

The momentum operator is therefore:

(132c) Pν =
h

2πi

∂

∂xν
− e

c
φν ;

furthemore we get for the angular momentum:

M1 = x2T ′
43 − x3T ′

42 = �ωψ∗
(

x2 ∂

∂x3
− x3 ∂

∂x2

)
ψ − cψ∗ψ[x2φ3 − x3φ2]

+
ω

4

{
x2 ∂

∂x1
(ψ∗µ2ψ) − x2 ∂

∂x2
(ψ∗µ1ψ) − x3 ∂

∂x3
(ψ∗µ1ψ) + x3 ∂

∂x1
(ψ∗µ3ψ)

}
,

24cf. also H. Tetrode, Zeit. f. Phys. 60, p. 858, 1928. Fomulae (13) and (16) as well as the
text on p. 862.
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and consequently for the corresponding operator

(133c) M1 =
h

2πi

(
x2 ∂

∂x3
− x3 ∂

∂x2

)
− e

c
(x2φ3 − x3φ2) +

iµ1

2
.

2. In the preceeding we have assumed Bose-Einstein statistics for the tetrads
hi,ν , i.e., we have chosen a minus sign in the bracket symbol for the CR’s. One
could ask whether it would be possible to apply Fermi statistics to the tetrads.
The criterion for the admissibility of CR’s with a plus sign is the following (cf.
H.P. I, p. 29): the usual bracket symbol (with the minus sign) [Gµ, Qα], [Gµ,Pα]
must assume the same value when one replaces the minus sign in [Qα, Qβ ],
[Pα,Pβ ], and [Qα,Pβ ] with a plus sign.

Applying this criterion the answer with reference to the tetrads is no, since
one sees from the form of the Hamiltonian (quadratic in the Pα) that in the
transition from a plus to a minus sign [H0, Qα] undergoes a change; the two
terms quadratic in the the Pα in the bracket symbol are different, and the
changes do not compensate each other.

3. The pure (vacuum) gravitational field could be described by the gµν

instead of the hi,ν . Then we would be dealing with another variation of the
“second case” and due to the general covariance group we would obtain four
identities of the form (Pα + Rα4)c4

αν = 0.

Summary

1. When the Lagrangian function L(Qα; Q̇α) transforms under the group 25

(2′)
{

δxν = αν,0
r (x)ξr(x),

δQα = c0
αr(x, Q)ξr + cσ

αr
∂ξr

∂xσ ,

as a scalar density, then there arises between the Q and the conjugate momenta
P the identities

(29′) Fr ≡ Pαc4
αr = 0.

In case L+L′, but not L, is a scalar density, where L′ is linear in the second
derivatives of the Qα, then Pα + Rα4 appears everywhere in place of Pα.

2. Consequently the solution of the equations

Pα =
∂L

∂Q̇α

for the Q̇α takes the form

(31′) Q̇α = Q̇0
α(P, Q) + λrc4

αr,

25For the purpose of this overview we specialize the formulas to the physically interesting
case j = 1.
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with arbitrary spacetime functions λr.
The Hamiltonian thereby takes the form

(35′) H = H0(P, Q) + λrFr.

The basic equations of the theory are the canonical field equations, the
canonical CR’s, and the constraints

Fr = 0 and
dFr

dx4
= 0.

3. The infinitesimal transformations of the group can be expressed as

(45) ωδ∗Φ = [M,Φ].

(46) M = PαδQα − Gµδµ.

(Φ is an arbitrary function that depends only on Q and P; Gµ is the (pseudo)
energy-momentum density).

A special case of M on an arbitrary slice x4 = x4
0 is εrFr. It follows from

Fr = 0 that the Fr commute amongst themselves, i.e., that the constraints
Fr = 0 are compatible.

Furthermore, due to the field equations,

(58)
dM
dx4

= 0,

from which it follows that

(63′) M =
∫

dx1dx2dx3

{
Fr

∂ξr

∂x4
− dFr

dx4
ξr

}
,

and

(64′)
d2Fr

(dx4)2
≡ 0,

based on the field equations (temporal evolution of the constraints).
4. The basic system of equations is invariant under the group.
5. The electromagnetic field, the Dirac material field, and the gravitational

field including all interactions were treated as examples. The relevant groups
are the gauge invariance group, the true Bein covariance group, and the group
of general relativity theory.

In particular, as regards gravitation, it is not possible to quantize the corre-
sponding field quantities with Fermi statistics.

I express my sincere thanks to Prof. Pauli for his suggestion to undertake
this work and for his valuable advice.

Zurich, Physics Institute of the Swiss Federal Institute of Technology, March
5, 1930

(received March 18, 1930)
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.
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1

λ1
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0 1
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0
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⎞⎟⎟⎟⎠ ,
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(
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)α′β′ (
P̄β′ − D̄β′)

,
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Ā−1

(
P̄ ′ − D̄′)
0
...
0

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
¯̇Q′0

0
...
0

⎞⎟⎟⎟⎠ ,

Thus we have
Q̇0

α = (A−1)αβ
(
P β − Dβ

)
,
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(A−1)αβ := Sδ′α(Ā−1)δ′γ′
Sγ′β .
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[13] This classical equality is established by Rosenfeld in Ann. de l’I. H. P.
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∂Qα,ν̄

∣∣∣∣
P

=
∂L

∂Qα,ν̄

∣∣∣∣
Q̇

+
∂L
∂Q̇β

∂Q̇β

∂Qα,ν̄

∣∣∣∣∣
P
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∣∣∣∣
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=
∂L

∂Qα,ν̄

∣∣∣∣
P
− ∂L

∂Q̇β

∂Q̇β

∂Qα,ν̄

∣∣∣∣∣
P

.

On the other hand

∂H
∂Qα,ν̄

= Pβ ∂Q̇β

∂Qα,ν̄

∣∣∣∣∣
P
− ∂L

∂Qα,ν̄

∣∣∣∣
P

= − ∂L
∂Qα,ν̄

∣∣∣∣
Q̇

.

[14] Using the notation and results from [12], we will find the explicit expression
for the Hamiltonian H = Pt

(
Q̇0 + λrcr

)
−L(Q, Q̇0+λrcr). First we rewrite

the Lagrangian density as

L(Q, Q̇0 + λrcr) =
1
2
Q̇tAQ̇ + DtQ̇ + E ,

where I define E := Bαν̄Qα,ν̄ +C. Using the fact that the cr are null vectors
of A and are orthogonal to D, we have

L(Q, Q̇0 + λrcr) = L(Q, Q̇0) =
1
2

¯̇QtSASt ¯̇Q + D̄t ¯̇Q + E

=
1
2

¯̇Qα′Aα′β′ ¯̇Qβ′ + D̄α′ ¯̇Qα′ + E

37



=
1
2
(
Ā−1

)α′ρ′ (
P̄ρ′ − D̄ρ′)

Aα′β′ (
Ā−1

)β′σ′ (
P̄σ′ − D̄σ′)

+D̄α′ (
Ā−1

)α′ρ′ (
P̄ρ′ − D̄ρ′)

+E

=
1
2
P̄α′ (

Ā−1
)α′β′

P̄β′ − 1
2
D̄α′ (

Ā−1
)α′β′

D̄β′
+ E

=
1
2
PtA−1P − 1

2
DtA−1D + E .

Therefore
H = H0 + λrFr,

where
H0 =

1
2
PtA−1P −DtA−1P +

1
2
DtA−1D − E

[15] Referring to [14]

Q̇α =
∂H

∂Pα
= (P γ − Dγ) (A−1)γα + λrcrα = Q̇0

α + λrcrα

Generally the preservation of the primary constraint under time evolution
will lead to a fixation of the functions λr and/or lead to more constraints.
Rosenfeld addresses this question below.

Also, referring to [12], note that

λrFr = λrcrαPα =
(∑

c2
rβ

)1/2

λreα
N−r0+rPα

=
(∑

c2
rβ

)1/2

λrSα N−r0+rPα =
(∑

c2
rβ

)1/2

λrP̄N−r0+r.

In other words, the additional term in the Hamiltonian is equal to a linear
sum of the vanishing momentum linear combinations P̄α′′

[16] If the spatial boundary is taken to be finite it appears to be sufficient
for Rosenfeld to assume that the field quantities take the same constant
value at each coordinate boundary. See my remark [17] preceding equation
(44). On the other hand if Rosenfeld is contemplating a falloff behavior
at spatial infinity he needs to assume that the Lagrangian asymptotically
approaches zero. An alternative not mentioned by Rosenfeld would be to
treat a spatially compact manifold.

[17] [[
Gµ,Gν

]
,Φ
]

= ω2

(
d

dxµ

dΦ
dxν

− d

dxν

dΦ
dxµ

)
= 0.

[18] There is a crucial error in the following discussion of the generator of in-
finitesimal transformations that will render invalid some of the properties
that Rosenfeld derives. I will present some details later with regard to the
example that is treated in Part Two. The results that Rosenfeld obtains
from this point on are strictly valid only for Yang-Mills type local gauge
theories. They do not hold for generally covariant systems.
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The fundamental problem is that we are asked to conceive of the quantum
mechanical commutator [M,Φ] as being placed in correspondence with
a classical Poisson bracket, to be understood therefore as a function of
canonical phase space variables. Thus we must interpret equations (47) as
representing on the left hand side the variations of the canonical variables,
initially conceived as functions of configuration variables Qα and velocities
Qα,4, and then projected under the Legendre transformation to functions of
Qα, Qα,ν̄ , and Pα. (This is especially clear in the derivation of the variation
of Pα in equation (50); Pα is understood here to be a function of Qα and
Qα,µ).

The problem is that some configuration-velocity space functions
f(Qα, Qα,ν̄ , Qα,0 are mapped under the Legendre transformation to zero.
The functions with this property are namely those for which

cα,r
∂

∂Q̇α

f = 0

To prove this assertion, define

f(Qα, Qα,ν̄ , Qα,0) := f̃(Q,P(Q, Q̇)).

Then since cα,r
Pβ

∂Q̇α
= 0 we find

(134) cα,r
∂

∂Q̇α

f = cα,r
∂f̃

∂Pβ

Pβ

∂Q̇α

= 0

Thus only projectable functions can appear on the left hand side of equa-
tions (47). Rosenfeld does not recognize this necessary restriction.

This restriction was first mentioned in print, as far as I can determine, by
Bergmann and Brunings, “Non-Linear Field Theories II. Canonical Equa-
tions and Quantization”, Rev. Mod. Phys., 480 (1949). They give the con-
dition (134) explicitly in their equation (3.24). The projectability obstacle
was rediscovered by Wald and Lee in 1990, “Local Symmetries and Con-
straints”, J. Math. Phys., 725 (1990). It is possible to overcome this ob-
stacle by introducing a coordinate symmetry transformation group whose
elements depend on the metric. Pons, Salisbury, and Shepley showed in 1996
that the compulsory metric dependence on infinitesimal coordinate trans-
formations is precisely the decomposition of transformations into those that
are tangential to a given time foliation of the spacetime manifold (that do
not necessarily depend on the metric), and transformations that are per-
pendicular to the foliation (and therefore do depend on the metric).

Returning to Rosenfeld, to be consistent he needed to restrict his variations
δ∗Qα to those that satisfy

cβ,r
∂

∂Q̇β

δ∗Qα = 0.
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[19] We have

1
ω

[
M,Pα

]
=

1
ω

[∫
d3x′(P ′βδQ′

β − G′
µδx′µ),Pα

]

= −Pβ ∂δQβ

∂Qα
− 1

ω

[∫
d3x′ (P ′βQ′

β,µ̄δx′µ̄ + H′δx′4) ,Pα

]
= −Pβ ∂δQβ

∂Qα
− ∂

∂xµ̄

(
Pαδxµ̄

)
+

∂H
∂Qα

δx4 − ∂

∂xµ̄

(
δx4 ∂H

∂Qα,µ̄

)
But according to (33) (and the fact that ∂H

∂Qα
= − ∂L

∂Qα
) we have

∂H
∂Qα

− ∂

∂xµ̄

∂H
∂Qα,µ̄

= − ∂L
∂Qα

+
∂

∂xµ̄

∂L
∂Qα,µ̄

= −Ṗα,

and therefore

1
ω

[
M,Pα

]
= −Pβ ∂δQβ

∂Qα
− ∂

∂xµ̄

(
Pαδxµ̄

)
+

∂δx4

∂xµ̄
Pαν̄ − Ṗαδx4.

[20]

δL =
∂L
∂Qβ

δQβ +
∂L

∂Qβ,µ
δ(Qβ,µ),

so

∂δL
∂Qα,ν

=
∂2L

∂Qβ∂Qα,ν
δQβ +

∂2L
∂Qβ,µ∂Qα,ν

δ(Qβ,µ) +
∂L

∂Qβ,µ

∂δ(Qβ,µ)
∂Qα,ν

,

where we used the fact that δQβ does not depend on Qα,ν . We also have

δ

(
∂L

∂Qα,ν

)
=

∂2L
∂Qα,ν∂Qβ

δQβ +
∂2L

∂Qα,ν∂Qβ,µ
δ(Qβ,µ).

Thus we find

δPαν =
∂2L

∂Qα,ν∂Qβ
δQβ − Pβµ ∂δ(Qβ,µ)

∂Qα,ν
.

[21] Since δxµ = 0 and δQα = c4...4
αr

∂jξr

(∂x4)j

M =
∫

d3xPαδQα = εrFr

[22] More generally,

[Fs(�x, x4
0),Fr(�x′, x4

0)] = δ3(�x − �x′)ct
rsFt(�x, x4

0).

Recall that Rosenfeld is confining himself here to transformations for which
δxµ = 0.
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[23]
dMν

dxν
=

dPαν

dxν
δQα + Pαν dδQα

dxν
− dPαν

dxν
Qα,µδxµ − PανQα,µνδxµ

−PανQα,µ
dδxµ

dxν
+

∂L
∂Qα

Qα,µδxµ + PανQα,µνδxµ + Ldδxµ

dxµ

Recall that
δQα,ν =

dδQα

dxν
− Qα,µ

dδxµ

dxν
.

and according to (13)

Ldδxµ

dxµ
= −δL = − ∂L

∂Qα
δQα − PανδQα,ν .

Substituting we find

dMν

dxν
= − ∂L

∂Qα
δQα+

∂L
∂Qα

Qα,µδxµ+
dPαν

dxν
δQα−

dPαν

dxν
Qα,µδxµ = −Lαδ∗Qα

[24] Rosenfeld evidently assumes that the variations vanish on the spatial
boundary.

[25] According to (38) and (43), replacing Φ in (43) by δ∗Φ, we have

ω2 dδ∗Φ
dxµ

=
[
Gµ, [M,Φ]

]
+ ω

[
∂M
∂xµ

,Φ
]

,

where in the last term we recognized that since Φ contains no explicit x
dependence,

ω
∂

∂xµ
δ∗Φ =

[
∂M
∂xµ

,Φ
]

.

But according to (5),

ω2 dδ∗Φ
dxµ

= ω2δ∗
(

dΦ
dxµ

)
=
[
M, [Gµ,Φ]

]
,

and therefore, using the Jacobi identity,[
M, [Gµ,Φ]

]
−
[
Gµ, [M,Φ]

]
=
[
[M,Gµ],Φ

]
= ω

[
∂M
∂xµ

,Φ
]

.

We conclude that [
dM
dxν

,Φ
]

= 0.

[26] There is a puzzle here. As Rosenfeld notes, the requirement that arbitrary
time derivatives of the constraints Fr = 0 vanish is an internal consistency
requirement. It is independent of the analysis of the generator M that
he has just undertaken. With this requirement in mind, the result that
dj+1Fr

(dx4)j+1 = 0 may be viewed as a consistency check. What Rosenfeld has

actually proven here is that on account of the requirement that diFr

(dx4)i = 0,
the generator M must vanish. But he never says this explicitly.
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[27] For a simple example suppose that Fr has no explicit time dependence.
Then in requiring that dFr

(dx4) = 0 we find

[H0,Fr] = χr + bs
rFs,

where χr is a secondary constraint (if it does not vanish identically). Then

ω2 d2Fr

(dx4)2
= [H, χr + (bs

r + cs
rtFs] = [H0, χr] + λu[Fu, χr],

where I have omitted terms that are proportional to F .

[28] We are to understand the presence of arbitrary functions as Rosenfeld’s
definition of “missing”.

[29] We are still considering here the special case j = 1.

[30] Keep in mind that in this definition k+1 ≤ i ≤ j, so these derivatives need
not vanish.

[31] Rosenfeld is demonstrating here that the cumulative variation in Φ obtained
by first performing an infinitesimal transformation generated by N and
then followed by a transformation generated by M can be written as a
transformation generated by M followed by a transformation generated by
an altered generator, namely N + 1

ω [M,N ] The transformed fields under
the first transformation are labeled by a “prime”, whereas the transformed
fields under the second transformation are denoted with a “tilde”. Thus

Φ′ = Φ +
1
ω

[N ,Φ],

and to be unambiguous Rosenfeld should denote the second transformed
field as (̃Φ′) and not ˜(Φ′), Thus

(̃Φ′) = Φ′ +
1
ω

[M,Φ′] = Φ +
1
ω

[N ,Φ] +
[
M,Φ +

1
ω

[N ,Φ]
]

= Φ +
1
ω

[N ,Φ] +
1
ω

[M,Φ] − 1
ω2

([
Φ, [N ,M]

]
+
[
N , [Φ,M]

])
= Φ +

1
ω

[M,Φ] +
1
ω

[
N +

1
ω

[M,N ],Φ +
1
ω

[M,Φ]
]

= Φ̃ +
1
ω

[
N +

1
ω

[M,N ], Φ̃]
]

,

where in the second line the Jacobi identity was used and in the third line
we ignore terms of order

(
1
ω

)3. Equivalently, he has computed the generator
of the commutator of the two transformations generated by N and M; this
infinitesimal commutator is generated by 1

ω [M,N ].
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[32] In other words, the commutator must be equal to some (so far unknown)
linear combination of the generators of the invariant subgroup.

[33] Rosenfeld does not employ the identity (81) to prove (80′). The key ob-
servation here is that the coefficients of Qα,νρ in rρ

r,ρ must vanish, where
rρ
r := rαρcαr. But since

rρ
r,ρ =

∂rρ
r

∂Qα
+

∂rρ
r

∂Qα,ν
Qα,νρ,

the desired coefficient is

∂rρ
r

∂Qα,ν
+

∂rν
r

∂Qα,ρ
= 0.

This is (80′).

[34]
∂

∂Qβ,ρ

(
dfν,αµ

dxµ

)
=

∂fν,αρ

∂Qβ
− d

dxµ

(
∂fν,αµ

∂Qβ,ρ

)
=

∂fν,αρ

∂Qβ

[35] Recall (80).

[36] Because of (80) [Rα4, Qα] = 0.

[37] We will begin here in translating Rosenfeld’s notation into conventional
contemporary form. He is using Fock’s conventions regarding the Vier-
beine, and these were in turn adopted from Levi-Civita, Sitzsungsberichte
der Preussischen Akademie der Wissenschaft, 137 (1929). He employs a
Minkowski metric with signature (+1−1−1−1). We will denote Minkowski
indices with capitalized latin letters from the middle of the alphabet, so the
components of the Minkowski metric are

ηIJ =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ .

Then hi,ν is the covariant tetrad with the Minkowski index lowered: hi,ν =
eIµ, where i becomes a Minkowski index ranging from 0 to 3. Thus ek

essentially raises Minkowski indices. Lower-case Greek indices will continue
to represent coordinate indices.

[38] Note that with the chosen signature φ0 = φ0 = −φ.

[39] Note that since hi,ν = eIµ, det(hi,ν) = −det(eI
ν) = −(−g)1/2. Also note

that Rosenfeld is employing Gaussian units, and since the action involves
an integral over ct, all of the contributions to the Lagrangian density should
be divided by c.
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[40] Excepting for a cyclic permutation of the Cartesian coordinate axes, the ρi

are i times the conventional Pauli matrices σi. In particular,

ρ1 = iσ3,

ρ2 = iσ1,

and
ρ3 = iσ2.

We therefore have

−σα1 =
(

0 σ3

−σ3 0

)
= Γ3,

−σα2 =
(

0 σ1

−σ1 0

)
= Γ1,

and

−σα3 =
(

0 σ2

−σ2 0

)
= Γ2.

Letting
Γ0 := σ,

the ΓI are the 4× 4 Dirac matrices. The sign of the spatial matrices differs
from the modern chiral representation, yet the ΓI still satisfy the correct
anti-commutation relation

{ΓI ,ΓJ} = 2ηIJ .

In the following when translating Rosenfeld’s spinorial expressions into
modern notation I will ignore the different identification of spatial coor-
dinate axes and write

eiσαi = ΓI .

[41] I have corrected an obvious typographical error in the second of equations
(95).

hi
ν in modern notation is Eµ

I , where to avoid confusion when considering
specific components I use a capital letter to represent contravariant coor-
dinate objects. So ekhk,µ = eK

µ and hν
kekhk,µ = δν

µ is the statement that
Eν

KeK
µ = δν

µ.

[42] gµν = eI
µeJ

ν ηIJ .

[43] This is the densitized Ricci rotation tensor in orthonormal basis, as we will
now show. The Ricci rotation coefficients are

(135) ωµIJ = Eα
I ∇µeJα,

where
∇µeJα := ∂µeJα − Γβ

αµeJβ .
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Expanding the Cristoffel symbols in terms of the tetrads we find

(136) ωµ
IJ = EαIeJ

[α,µ] − EαJeI
[α,µ] + EαIEβJeµLeL

[α,β],

and therefore

ωL
MK := Eµ

Lωµ
MK = Eµ

LEαMeK
[α,µ] + Eµ

LEαKeM
[µ,α] + EαMEβKeL[α,β]

Rewriting in Rosenfeld’s notation we find, recognizing that his ηl
ρσ defined

in (97) is our 2eL[ρ,σ],

2h′ωLMK = 2(Eµ
LEα

MeK[α,µ] + Eµ
LEα

KeM [µ,α] + Eα
MEβ

KeL[α,β])h′

= −(ηl
ρσhσ

mhρ
k + ηm

ρσhσ
l hρ

k + ηk
ρσhσ

mhρ
l )h

′ = −2γmkl

[44] This object is essentially the combined local Lorentz and U(1) connection
for Dirac spinors. In our new notation

Cl :=
1
4
ekαmαkγmkl +

e

ω
hσ

l φσh′

=
1
4
Γ0ΓNγ0NL − 1

4
Γ0ΓiΓ0ΓNγiNL − ie

h̄c
φσEσ

L(−g)1/2

=
(−g)1/2

4
(
Γ0ΓiωL0i − Γ0ΓiωLi0 − Γ0ΓiΓ0ΓjωLij

)
− ie

h̄c
φσEσ

L(−g)1/2

=
(−g)1/2

4
ΓIΓJωLIJ − ie

h̄c
φσEσ

L(−g)1/2 =: CL

where I use a latin lower case letter from the middle of the alphabet to
denote a spatial Minkowski index, and I made use of the anticommutator
for the Γ matrices, and the antisymmetry of the connection ωLMN under
the interchange of M and N .

[45]
γσ = −Γ0ΓKEσ

K(−g)1/2

To avoid confusion I am letting ΓM represent the Minkowski Dirac gamma
matrices.

[46] The mass and the charge terms appear with the wrong sign in this expres-
sion, as they do also in the final form of the matter Lagrangian, equation
(103).

−elαlCl = −Γ0ΓLCL = −Γ0ΓL (−g)1/2

4
ΓIΓJωLIJ + Γ0ΓL ie

h̄c
φσEσ

L(−g)1/2

So we find upon substitution that

�ωψ∗
(

γσ ∂ψ

∂xσ
− elαlClψ

)
− mc2ψ∗σψh′
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= �
(

ih̄c(−g)1/2ψ†Γ0Eµ
I ΓI

(
∂

∂xµ
+ Ωµ − i

e

h̄c
φµ

)
ψ

)
+mc2ψ†Γ0ψ(−g)1/2,

where
Ωµ :=

1
4
ΓIΓJωµIJ ,

is the spinor connection, consistent with the Cristoffel connection, that
respects the scalar and vector nature of ψ†γ0ψ and ψ†γ0Eµ

I γIψ, respec-
tively. It was first constructed independently by H. Weyl, Zeitschrift fr
Physik, 56, 330 (1929) and V. Fock, Zeitschrift f̈r Physik, 57, 261 (1929).
Both authors were attempting a geometric unification of Dirac’s electron
theory with gravity. See the article by E. Scholz, ”Local spinor structures
in V. Fock’s and H. Weyl’s work on the Dirac equation”, physics/0409158,
for a discussion of the historical importance of this work both in the uni-
fication program and in the development of gauge theories in general. For
the relevance to gauge theory see also the article by N. Straumann, ”Gauge
principle and QCD”, physics/0509116.

[47] The final form of Rosenfeld’s matter Lagrangian is

W = ωψ∗
(

γσ ∂ψ

∂xσ
− elαlClψ

)
− mc2ψ∗σψh′

= ih̄c(−g)1/2ψEµ
LΓL

(
∂

∂xµ
+ Ωµ − i

e

h̄c
φµ

)
ψ + mc2ψψ(−g)1/2

where ψ := ψ†Γ0.

[48] Rosenfeld’s gravitational Lagrangian is obtained in the following way. The
curvature in terms of the Ricci rotation coefficients is

(137) 4RIJ
µν = Eµ

I Eν
J

(
∂µωIJ

ν − ∂νωIJ
µ + ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)

Then the scalar curvature density is

4R := (−g)
1
2 4R

= 2(−g)
1
2 Eµ

I Eν
J∂µωIJ

ν + (−g)
1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)

= ∇µ

(
2(−g)

1
2 Eµ

I Eν
JωIJ

ν

)
−∇µ

(
2(−g)

1
2 Eµ

I Eν
J

)
ωIJ

ν

+ (−g)
1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)
,(138)

where in the third line we recognized that the covariant derivative of the
vector density of weight one is just the ordinary derivative.

Using

(139) ∇µEν
J = −ωµJ

LEν
L,
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and ∇µgαβ = 0 we find

∇µ

(
2(−g)

1
2 Eµ

I Eν
J

)
ωIJ

ν = 2(−g)
1
2 (∇µEµ

I Eν
J + Eµ

I ∇µEν
J)ωIJ

ν

= 2(−g)
1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)
.(140)

Therefore (138) may be rewritten as
(141)

4R = ∇µ

(
2(−g)

1
2 Eµ

I Eν
JωIJ

ν

)
− (−g)

1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)
,

or
(142)

4R−∇µ

(
2(−g)

1
2 Eµ

I Eν
JωIJ

ν

)
= −(−g)

1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)

This is Rosenfeld’s −G as we now show.

Defining

(143) ηIαβ := 2eI[α,β],

and referring to (136) we have

(144) ωIJ
µ =

1
2
EαIηJ

αµ − 1
2
EαJηI

αµ +
1
2
EαIEβJeµLηL

αβ

and

(145) Eµ
I ωµ

I
L = −1

2
Eµ

I Eα
LηI

αµ +
1
2
gαµEβ

LeµMηM
αβ = Eβ

LEα
MηM

αβ .

Therefore
(146)
Eµ

I ωµ
I
LEν

Jων
LJ = −Eβ

LEα
MηM

αβEσLEρ
NηN

ρσ = −gβσEα
MηM

αβEρ
NηN

ρσ.

Similarly, using (144), we find

(147) 2Eµ
I ωµ

LJ = Eµ
I EαLηJ

αµ − Eµ
I EαJηL

αµ + EαLEβJηIαβ ,

and therefore

Eµ
I Eν

Jων
I
Lωµ

LJ =
1
4
(
Eµ

I EαLηJ
αµ − Eµ

I EαJηL
αµ + EαLEβJηIαβ

)
×(

Eν
JEρIηLρν − Eν

JEρ
LηI

ρν + EρIEσ
LηJρσ

)
= −1

2
ηMαβηN

ρσgαρEβ
NEσM − 1

4
ηMαβηM

ρσgαρgβσ(148)

Thus substituting from (146) and (148) we have

(−g)
1
2 Eµ

I Eν
J

(
ωµ

I
Lων

LJ − ων
I
Lωµ

LJ
)

= −(−g)
1
2

(
gβσEα

MηM
αβEρ

NηN
ρσ − 1

2
ηMαβηN

ρσgαρEβ
NEσM − 1

4
ηMαβηM

ρσgαρgβσ

)
= G (149)
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Next compare the divergence term to Rosenfeld’s. According to (144) we
have

(150) Eµ
J ωIJ

µ = −Eµ
J∇µEαIeJ

α = −∇µEµI .

Therefore the vector density appearing in the divergence of Rosenfeld in
(105) is

−2EµI
(
(−g)

1
2 Eν

I

)
,ν

= −2EµI∇ν

(
(−g)

1
2 Eν

I

)
= −2(−g)

1
2 EµI∇νEν

I = −2(−g)
1
2 Eµ

I Eν
JωIJ

ν .(151)

This is indeed the vector density whose divergence appears in (142).

[49] See [57]

[50] Note that in cgs units, the dimension of the four-potential φµ is
mass1/2length1/2time−1, and the dimension of the descriptor ξ is therefore
mass1/2length3/2time−1. The factor e

ω ξ is therefore dimensionless.

[51] This specialization to the flat case should read

hi,ν = eiδi,ν ,

as it is correctly expressed immediately following equation (128c).

[52] In modern notation the flat spacetime Lagrangian density is

Lflat = ih̄cψ̄Γµψ,µ − eφµψ̄Γµψ − mc2ψ̄ψ − 1
4
EµνEµν .

We find
φ̇a = Pa + φ0,a,

and
Pψ = ih̄cψ∗.

Substituting, we have

H0 flat = Paφ̇a + Pψψ̇ − L0 flat

=
1
2
PaPa +

1
4
EabEab + Paφ0,a + eφµψ̄Γµψ + mc2ψ̄ψ − ih̄cψ̄Γaψ,a

=
1
2
PaPa+

1
4
EabEab+Paφ0,a+

ie

h̄c
φµPψΓ0Γµψ − imc

h̄
PψΓ0ψ − PψΓ0Γaψ,a

[53]
ωφ̇a = ω (Pa + φ0,a) ,

ωψ̇ = ω

(
−Γ0Γaψ,a − ie

h̄c
φµΓ0Γµψ − imc

h̄
ψ

)
,

ωṖa = ω
(
Eab

,b − eψ̄Γaψ
)
.
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[54] We get the secondary constraint[
H0 flat,P0

]
= 0 = −ih̄c

(
eψ∗ψ − Pa

,a

)
.

[55] The charge density is ρ = eψ∗ψ. Also, according to the equation of motion
for Pa,

Ṗa
,a = Eab

ab −
(
eψ̄Γaψ

)
,a

= −ja
,a,

where ja = eψ̄Γaψ is the current density. Therefore the condition P̈0 = 0
reads ∂ρ

∂t +ja
,a = 0. This relation is satisfied as a consequence of the equation

of motion for ψ.

[56] This is the site of Rosenfeld’s crucial error. To be consistent it is necessary
to restrict attention to variations that are projectable under the Legendre
transformation, as observed in [18]. One set of projection conditions in this
case is that all configuation-velocity functions must be annihilated by the
operator ∂

∂ėI
0
. In particular we require that

(152)
∂δ∗eJ

µ

∂ėI
0

= 0,

where

(153) δ∗eJ
µ = −eJ

ν ξν
,µ − eJ

µ,νξν

The offending term, −eJ
0,0ξ

0 can be eliminated by introducing infinitesimal
coordinate variations that depend explicitly on eI

0. The full details will be
presented elsewhere. The result is that permissible, i.e., projectable trans-
formations are of the form

(154) δµ = δµ
a εa + nµε0,

where

(155) nµ = − gµ0

(−g00)1/2
,

is the normal to the constant coordinate time surfaces. The functions ξµ

are arbitrary functions of the spacetime coordinates, and in general also of
the tetrad components eI

a.

It turns out that when additional gauge symmetries are present, as in
Rosenfeld’s model, even this metric field dependence is not sufficient to
render projectable diffeomorphism-induced field variations; only a combi-
nation of diffeomorphism-induced and gauge is projectable. It turns out
that infinitesimal local Lorentz transformations must be added to the gen-
eral coordinate transformations in order to obtain projectable transforma-
tions. This was first pointed out - though from a different perspective and
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a different context - by Salisbury and Sundermeyer, “The local symmetries
of the Einstein-Yang-Mills Theory as phses space transformations”, Phys.
Rev. D27, 757 (1983). In my commentary here I will confine myself to the
vacuum gravitational theory.

[57] Under the infinitesimal coordinate transformation x′µ = xµ+ξµ, coordinate
covectors vµ transform as

v′
µ(x′) =

∂xν

∂x′µ vν(x) = vµ(x) − ξν
,µvν(x),

so
δvµ := v′

µ(x′) − vµ(x) = −ξν
,µvν .

It is straightforward to show that under this coordinate transformation

δ

(
∂

∂xµ

(
2(−g)

1
2 Eµ

I Eν
JωIJ

ν

))
= −ξν

,ν

(
∂

∂xµ

(
2(−g)

1
2 Eµ

I Eν
JωIJ

ν

))
.

In other words, the term that is subtracted from the Ricci scalar density
to form the gravitational Langrangian density G is itself a scalar density.
Thus, as Rosenfeld observes, G is a scalar density under general coordinate
transformations.

[58] Recall that these identities arise from the vanishing of coefficients of the
highest derivatives of ξµ that appear in the identity expressing the scalar
density nature of the Lagrangian density. In this case we are dealing with
second derivatives, and the irrelevance of the order in which they are un-
dertaken results in the symmetrization under exchange of µ and ν.

[59] Representing in modern notation the momenta conjugate to eI
µ by Pµ

I we
have

PµI =
1
2χ

∂G
∂ėIµ

+
∂M
∂ėIµ

,

and

∂G
∂ėIµ

= (−g)1/2

(
−2gβσEα

MEρL + gαρEβLEσ
M +

1
2
gαρgβσδL

M

)
ηM

αβ

∂

∂ėIµ
ηLρσ.

Substituting
∂

∂ėIµ
ηLρσ = 2δI

Lδ[µ
ρ δ0]

σ ,

we find

∂G
∂ėIµ

= (−g)1/2
(
−4gβ[0Eµ]IEα

M + 2gα[µE
0]
MEβI + gα[µg0]βδI

M

) (
eM

α,β − eM
β,α

)
.

In addition, the contribution to the momentum from the matter Lagrangian
is

∂M
∂ėIµ

= ih̄(−g)1/2ψ̄Eν
LΓL ∂Ων

∂ėIµ
ψ.
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Referring to (143),

∂Ων

∂ėIµ
= Eα

KδI
Jδµ

[αδ0
ν] − Eα

J δI
Kδµ

[αδ0
ν] + Eα

KEβ
J eL

ν δI
Lδµ

[αδ0
ν]

= δI
JE

[µ
K δ0]

ν − δI
KE

[µ
J δ0]

ν + E
[µ
K E

0]
J eI

ν ,

and therefore

∂M
∂ėIµ

= 2ih̄(−g)1/2ψ̄ΓL

(
ΓKΓIE

[µ
K E

0]
L − EI[µE

0]
L +

1
2
ΓKΓJE

[µ
K E

0]
J δI

L

)
ψ.

The momentum conjugate to eIµ is therefore given by

PµI =
1
χ

(−g)1/2

(
−2gβ[0Eµ]IEα

M + gα[µE
0]
MEβI +

1
2
gα[µg0]βδI

M

)(
eM

α,β − eM
β,α

)
+2ih̄(−g)1/2ψ̄ΓL

(
ΓKΓIE

[µ
K E

0]
L − EI[µE

0]
L +

1
2
ΓKΓJE

[µ
K E

0]
J δI

L

)
ψ

[60] I doubt that Rosenfeld succeeded in deriving the canonical Hamiltonian
H0; this is the problem of solving the momentum relations for the (non-
gauge) velocities. He had made what turned out to be an important first
step from the point of view of conventional Hamiltonian gravity. He had
chosen to work with a Lagrangian that did not depend on the velocities ėI

0,
with the result that some of the corresponding primary constraints were
trivial. Dirac first made this simplification in conventional gravity in 1958
when he succeeded in removing the time derivatives ġ0µ in “ The theory
of gravitation in Hamiltonian form”, Proc. Roy. Soc. 246, 333 (1958). The
determination of the velocities ġab in terms of the remaining momenta was
then greatly simplified, and he was able to easily write down the (vanish-
ing) canonical Hamiltonian. Beginning in 1959 Arnowitt, Deser, and Misner
made a similar discovery in a new Palatini approach to gravity, summarized
in “The dynamics of general relativity”, in Gravitation: an introduction to
current research, L. Witten, ed. (Wiley, New York, 1962). This paper is
available online at arXiv:gr-qc/0405109. I will derive Rosenfeld’s H0 else-
where.

[61] This expression is incorrect, as is Rosenfeld’s derivation of secondary con-
straints that follows. I will discuss the corrections that must be made in
another publication. As mentioned above, the problems stem from the fail-
ure to take Legendre projectability into account.

[62] δeIν = ξIJeJ
ν

[63] Recall that since αī = −Γ0Γī, α4 = 1, σ = Γ0, and eīσαī = Γī,

δψ =
1
4
ejξijαiαjψ =

1
4
ξīj̄Γ

0ΓīΓ0Γj̄ψ − 1
2
ξ0j̄Γ

0Γj̄ψ = −1
4
ξIJΓIΓJψ
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[64] Recall that according to [48]

1
2χ

G =
1
2χ

R− 1
χ

(
EνL

(
(−g)1/2Eµ

L

)
,µ

)
,ν

=
1
2χ

R + L′,

and therefore according to the definition (14),

fν,
αL

µ
(
−(−g)1/2EαL

)
,µ

=
1
χ

Eν
L

(
−(−g)1/2EµL

)
,µ

,

so we deduce that
fν,

αL
µ =

1
χ

Eν
Lδµ

α.

[65] According to the definition (2)

δEαM = cαMIJξIJ = ξM
JEαJ ,

so we deduce that

cαMIJ =
1
2
(
EαJηMI − EαIηMJ

)
=

1
2
(−g)1/2

(
EαIηJM − EαJηIM

)
.

[66] It is simplest to calculate the variation of L′ directly and then use (71), or
equivalently (72), to read off the expression for IνIJ .

We find that since

L′ =
1
χ

(
EνL

(
Eµ
(
(−g)1/2

)
,µ

+ Eµ
L,µ(−g)1/2

))
,ν

=
1
χ

(
gνµ
(
(−g)1/2

)
,µ

+ EνLEµ
L,µ(−g)1/2

)
,ν

,

δL′ =
1
χ

(−g)1/2
(
δEνLEµ

L,µ +
(
EνL(δEµ

L),µ

))
,ν

=
1
χ

(
(−g)1/2

(
ξLMEν

MEµ
L,µ + Eν

L(ξLMEµ
M ),µ

))
,ν

=
1
χ

(
ξLM

(
(−g)1/2Eν

MEµ
L

)
,µ

)
,ν

Thus we deduce from (72) that

IνIJ =
2
χ

(
(−g)1/2Eν[IEJ]µ

)
,µ

[67] According to the definition (2)

δeαM = cαM
IJξIJ = ξM

JeαJ ,

so we deduce that
cαM

IJ = e[J
α δ

I]
M .

[68]

cψ
IJ = −1

4
ΓIΓJψ.
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[69]

FIJ = PαMcαM
IJ + Pψcψ

IJ = Pα[IeJ]
α − ih̄c

1
4
ψ̄E0

LΓLΓIΓJψ.

This is the correct generator of local Lorentz transformations.

[70]

T Iν =
δW
δeIν

.

[71] This is just the coefficient of ξIK in δW = δW
δeJν

δeJν = δW
δψ δψ + δW

δψ∗ δψ∗.

[72]
T IµeJ

ν − T JµeI
ν = 0.

[73] The Rosenfeld expression should actually be T ′′
ik = ekTi

νhk,ν . Transcribing
in modern notation this is

T ′′IK = T IµeK
µ .

[74]

T ′I
ν =

δ�W
δEν

I

= −eJ
ν eI

ρ

δ�W
δeJ

ρ

= −eJ
ν eI

ρTJ
ρ =: (−g)1/2T ′I

ν .

[75] First note that
∂(−g)1/2

∂Eν
I

= −(−g)1/2eI
ν .

Then referring to [47]

δ�W
δEν

I

= −eI
ν�W+�ih̄c(−g)1/2ψΓI

(
∂

∂xν
+ Ων − i

e

h̄c
φν

)
ψ+�ih̄c(−g)1/2ψEµ

LΓL δΩµ

δEν
I

,

and

T ′I
ν = −eI

ν�W + �ih̄cψΓI

(
∂

∂xν
+ Ων − i

e

h̄c
φν

)
ψ + �ih̄cψEµ

LΓL δΩµ

δEν
I

,

where W =: (−g)1/2W .

[76] Eν
I = δν

I .

[77]

T ′I
ν = −δI

νW + ih̄cψΓI

(
∂

∂xν
− i

e

h̄c
φν

)
ψ,

where

W = ih̄cψΓµ

(
∂

∂xµ
− i

e

h̄c
φµ

)
ψ + mc2ψψ
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[78]

T ′00 = −ih̄cψΓa

(
∂

∂xa
− i

e

h̄c
φµ

)
ψ − mc2ψψ.

As noted in [46], the mass term appears with the wrong sign in Rosenfeld’s
matter Lagrangian. The corrected expression is therefore

T ′00 = −ih̄cψΓa

(
∂

∂xa
− i

e

h̄c
φµ

)
ψ + mc2ψψ.

[79] Rosenfeld is now interpreting the energy density as arising from a single
particle expectation value, where the ψ are conceived as elements of an L2

Hilbert space. Thus he interprets

T ′00/c =< ψ|H|ψ >,

with the energy operator

H =
h̄

i
Γ0Γa ∂

∂xa
− eΓ0Γµφµ + Γ0mc.

The Dirac equation is then Hψ = ih̄ ∂ψ
∂x0 .

[80]
T ′0

a = �ih̄cψ∗ψ,a − eψ∗ψφa.
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