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In Proposition VIII Problem II Newton is concerned with the following problem: Through a 
reflecting telescope of a given length and a given aperture radius a far remote object, e.g. a 
star, is seen with a certain degree of distinctness and brightness. The length and aperture 
radius of a second reflecting telescope is asked for through which the same object is seen with 
the same degree of distinctness and brightness, but in a different magnification. 
 Newton’s own calculations have not come down to us. Robert Smith [1] seems to be 
the first to have published a solution of Newton’s Proposition VIII Problem II. However, 
Smith’s solution is not quite correct, and therefore a new solution is presented building 
soleley on the mathematics known to Newton and J. Lamberts’s results [3] from his 
investigations of the brightness of luminous bodies.  
 The resolving power of a telescope is the measure of the distinctness with which an 
object is seen through the telescope. This resolving power is measured by the smallest 
distance between two points which can be recognized separately through the telescope. Since 
there is no chromatic aberration in concave mirrors, the resolving power of a reflecting 
telescope is merely limited by the spherical aberration of its concave mirror. To simplify 
matters, let us assume that the lens of the eye-piece is an ideal symmetrical lens without any 
spherical and chromatic aberration. In this case the diminuation of an object’s distinctness is 
owes soleley to the spherical aberration of the concave mirror. 
 
 
1. THE SPHERICAL ABERRATION OF A CONCAVE MIRROR 
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In fig. 1 light falls parallel to the optical axis CV on the spherical concave mirror AVB with 
the vertex V. However, the reflected rays do not intersect the optical axis CV in a single point. 
Rays incident more distant from the optical axis before reflection have their point of 
intersection closer to the vertex V. This phenomenon is known as the spherical aberration of a 
spherical concave mirror.  
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In fig. 2 the radius CA of the spherical concave mirror AVB is perpendicular to the reflecting 
surface in the point A. Since the angle of incidence α is equal to the angle of reflection CAf 
and moreover this angle is equal to the angle ACf, the triangle CAf is isosceles. Let r denote 
the radius CA of the concave mirror AVB, then   

 
  
cosα =

1
2 CA
Cf

= r
2Cf

 (1) 

 or 

 
  
Cf = r

2
1

cosα
.  (2) 

The distance Vf of the intersection point f from the vertex V is 
   Vf = CV −Cf = r −Cf .  (3) 
By using the series 

 
 

1
cosα

= 1+ 1
2
α 2 + 5

24
α 4 + 61

720
α 6 + ...  (4) 

the relation (3) becomes 

 
  
Vf = r − r

2
1+ 1

2
α 2 + ...

⎛
⎝⎜

⎞
⎠⎟

.  (5) 
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If the angle α is small, the distance Vf of the intersection point f of the ray RA is only slightly 

different from 
  
r
2

 and if the ray RA is paraxial (i.e.  α ≈ 0) the distance Vf equals
  
r
2

. The point 

F located in the middle between the vertex V und the center C of the concave mirror AVB is 
called the principal focus of the concave mirror. After their reflection the paraxial rays RA 
cross each other in this point F and therefore the distance CF is called the focal length of the 
concave mirror AVB. This focal length is 

 
  
CF = FV = 1

2
CV .  (6) 
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In fig. 3 draw the tangent AT through the point A of the circle AVBV* and drop the 
perpendicular APB to the line V*CV from the point A. Then the Pythagorean theorem and the 
altitude theorem of the triangle CAT yield the equations 
   CA2 + AT 2 = CT 2  (7) 
   CP × PT = AP2  (8) 
and the Pythagorean theorem of the triangle APT yields the equation 
   PT 2 + AP2 = AT 2.  (9) 
In view of  PT = CT −CP  and CV = CA , these equations give rise to the proportion 
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   CP :CV = CV :CT . (10) 
Moreover, this proportion yields the proportion 
   CP :CP −CV = CV :CV −CT .  (11) 
And by using the relations  VP = CV −CP  and  VT = CT −CV this proportion yields the 
proportion 
   CP :CV =VP :VT .  (12) 
In the following let the rays RA always be paraxial, i.e. the rays RA incident on the concave 
mirror are parallel to the optical axis CV and very close to it. This assumption means that the 
aperture AB is sufficiently small for the approximations   VP ≈ 0  or  CP ≈ CV to be valid, and 
because of (12) the approximation 
  VP ≈VT  (13) 
is equally valid. 
The triangle fAT is isosceles owing to the following angular relations in this triangle. 
     fTA =CTA = 900 − ACT = 900 −RAC  (14) 
     fAT = 900 −CAf = 900 −RAC  (15) 
Since the angles    fTA  and    fAT  are equal the equation 
  Af = fT  (16) 
obtains. The triangle fCA is isosceles on account of 
    fCA =RAC  (17) 
    CAf =RAC.  (18) 
Since the angles    fCA  and   CAf  are equal the equation 
  Cf = Af  (19) 
is valid. The equality relation 
  Cf = Af = fT  (20) 
is valid because of (16) und (19). The relation 

 
  
Cf = 1

2
CT  (21) 

follows from this equality relation because of CT = Cf + fT .  
All the rays falling parallel to the optical axis CVT on the concave mirror AVB will upon 
reflection cut the optical axis CVT between the points f and F. The distance between these two 
points is called the longitudinal aberration fF of the concave mirror, i.e. 
   fF = Cf −CF.  (22) 
With (6) and (21) the longitudinal aberration becomes 

 
  
fF = 1

2
CT −CV( ) = 1

2
VT .  (23) 

Owing to (13) the longitudinal aberration is 

 
  
fF = 1

2
VP.  (24) 

To determine the dependence of this longitudinal aberration fF on the aperture radius AP and 
the radius CV of the concave mirror AVB we take into consideration the circle AVBV* with 
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the diameter   VV* = 2CV . According to the theorem of Thales the triangle V*AV is right-
angled and therefore the altitude theorem applies, i.e. 
   AP2 =V *P ×VP  (25) 
or 

 
  
VP = AP2

V *P
.  (26) 

 
When the ray RA is paraxial, the length VP is very small and so the approximation 
  V * P ≈V *V = 2CV  can be made use of. Then the relation (26) becomes 

 
  
VP = 1

2
AP2

CV
. (27) 

Insertion of this relation into (24) yields the required expression of the longitudinal aberration 
fF, i.e.  

 
  
fF = 1

4
AP2

CV
.  (28) 

Upon reflection the whole lot of the rays incident on the concave mirror does not meet the 
optical axis in a single point, but the intersection points of the reflected rays are, as it were, 
smeared along the optical axis between f und F. For this reason the reflected rays do not meet  
precisely in the principal focus F, but are spread over a circle in the plane situated 
perpendicularly to the optical axis CVT in the principal focus F. This circle is known as the 
aberration circle in the principal focus F and his radius FD is known as the lateral aberration 
in the principal focus F. This lateral aberration FD is 

 
 
FD = AP× fF

fP
 (29) 

on account of the proportion 
   FD : fF = AP : fP.  (30) 
 
Because of (28) and (29) the lateral aberration of the paraxial rays is 

 
  
FD = 1

4
AP3

CV × fP
. (31) 

To determine the dependence of this lateral aberration on the aperture radius AP and the 
radius of the curvature CV of the concave mirror AVB we use the following relation resulting 
from fig. 3 
   fP = CV −VP − fF −CF.  (32) 
Insertion of (6) and (24) into this relation yields 

 
  
fP = 1

2
CV − 3

2
VP.  (33) 

Since in case of paraxial rays the length VP is very small the expression (33) becomes 

 
  
fP = 1

2
CV .  (34) 
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Finally, by means of this expression the relation (31) yields the required relation 

 
  
FD = 1

2
AP3

CV 2 .  (35) 

The lateral aberration FD in the principal focus F is directly as the cube of the aperture radius 
AP of the concave mirror and inversely as the square of its curvature radius CV. 
 
 
 
2. THE DISTINCTNESS OF A REFLECTING TELESCOPE 
 
Through two different telescopes one and the same object is seen with the same distinctness 
when the same details are distinguishable. So allowing for spherical aberration, how closely 
may two details be located without merging? 
 The overly short answer provided by Robert Smith in his book [1, p. 139 § 342] was 
changed and more fully formulated by Abraham G. Kästner [2] in his German translation and 
revision of Smith’s book. Kästner explains in great detail that the magnitude of the aberration 
circle of a lens in its focus is the measure of the distinctness in which a viewed object is seen 
through the lens. Kästner’s considerations which only deal with the aberration of a lens can 
easily be applied to the concave mirrors of the reflecting telescopes. For this reason we will 
first present at some length the argument contained in Kästner’s book [2, p. 142 - 144]: 
 

 „What I will offer to bear out this proposition I do not wish to call a fully consistent proof, but 
hopefully will suffice for credibility to those who do not flatly deny the common doctrine of 
vision. 

For distinct vision it is required that every point of the object has just one point on the 
bottom of the eye as its image and that no other light falls on this point. This is corroborated by the 
common doctrine of sensations. For if a site of the eye is simultaneously affected by the light of 
other points, the soul will perceive simultaneously something from all these other points and in the 
process will not discriminate between different points because due to experience discrimination is 
only among points whose images fall on different parts of the eye. Therefore the sensation through 
an image containing light from different points of the object will consists of different sensations of 
different parts of the object, but these different sensations are not distinguished, i.e. the soul will 
have an indistinct sensation because according to the general laws of sensation and due to the 
limits which are set to the powers of the soul an indistinct sensation is composed of a multitude of 
sensations which arise simultaneously and cannot be distinguished by the soul. In a word, if many 
things simultaneously excite one single place of a sense organ, then the sensation excited thereby 
becomes blurred because this sensation is to represent something of all these things, but cannot 
fully distinguish one thing from another. 
 I do not assert herby that the soul will not at all discriminate between parts of the object which 
send light to one and the same site of the eye. For from these very parts light can also fall on other 
locations of the eye and owing this the soul will discriminate among them. The point is, however, 
that the soul does not discriminate among them by light falling on a single site. 
 Hence, if the rays coming from a single point of the object are spread out on the bottom of the 
eye across the circle ABD with the center C as a result of the refraction which the rays suffer when 
passing through the glasses, then this center C would be the distinct image of that point of the 
object and would contain all the rays coming from that point into the eye unless this would be 
changed by the refraction of the glasses: Because there is no reason to assume here that the glasses 
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would deflect the rays more to the one side than to the other side of the point toward which they 
would refract the rays if there were no spherical aberration and chromatic aberration. 
 Hence, the rays coming from another point of the object are, as a consequence of refraction by 
the lenses, spread out across another equally large circle (for there once again no reason to assume 

different magnitudes) whose center E be 
inside the circle ABD. It is evident that light 
coming from this second  luminous point 
strikes C because light coming from that 
point spreads out across the whole circle 
having the center E and a semidiameter 
equal to the semidiameter of the circle 
ABD. 
 Therefore C receives light from so 
many points of the object as points E are 
inside the area ABD. Since presumably C 

receives as much light from some point as it receives from another point, the indistinctness is as 
the quantity of the points E being inside ABD. 
 If now abd is another aberration circle in the same eye or in an eye of the same constitution, but 
caused by other glasses, and if c is its center and e is the center of the aberration circle of the rays 
coming from another point of the object, then the quantity of the extraneous rays falling on C will 
be to the quantity of the extraneous rays falling on c as the quantity of points E contained in ABD 
is to the quantity of points e contained in abd. Since in both cases the constitution of the eye is the 
same and these circles are not caused by a defect of the eye, but by refraction taking place in the 
glasses, the points C, E, c, e would be perfectly distinct images of certain points of the object 
stopping short of the blurring caused by the refraction of the rays. But if the object remains the 
same and is seen distinctly through glasses by the same eye, then its image will always remain 
similar to itself, the magnitude of the image changing only when other glasses or differently 
composed  glasses are assumed, i.e. the points C, E belonging to certain glasses will have the same 
position to each other as the points c, e belonging to other glasses. For example, the object would 
appear smaller through other glasses, i.e. its image in the eye would be smaller and yet distinct. If 
C is the image of a certain point of the object seen through the first glasses and c the image seen 
through the other ones and and this being also true of E and e, then the point e will have the same 
position to c as E has to C but with E lying closer to C. Innumerable points e lying around c will 
yield an image of the object which is similar to the image yielded by innumerable points E and C, 
being but smaller. Hence, the quantity of points inside the circle ABD will be to the quantity of 
points e inside the circle abd as are the areas of both circle to one another. These quantities, 
however, are as the indistinctnesses.“ 

 
 Now let us apply Kästner’s considerations to the Newtonian-type reflecting telescop.  
In fig. 4 the concave mirror AB, the ocular lens HH* and the eye or the pupil PP* of the 
observer have been arranged in a single line presenting the optical axis (ignoring optically 
irrelevant complications through the prism).  
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The point F is the focus both of the concave mirror AB and of the ocular lens HH*. 

When a light ray coming from this common focus F falls on the lens HH*, after its passage 
through this lens it will continue parallel to the optical axis, pass through the pupil  PP* and 
meet the retina at point X. Owing to the spherical aberration of mirror AB, the outermost light 
ray falling parallel to the optical axis on concave mirror AB in B will cut the optical axis not 
in F, but in E. After its passage through the lens HH* it will not run parallel to the optical 
axis, but slightly inclined toward the optical axis. And so it will meet the retina not in X, but 
in Y. Hence XY is the image of the aberration circle DF on the observer‘s retina. 
 Let a second Newtonian reflecting telescop similar to the former one be denoted by 
small letters. What has been said about the former also applies to the latter. According to 
Smith and Kästner, these two telescopes, then, yield equally distinct views whenever the 
images XY, xy of the aberration circles DF, df on the retina are equal. Therefore the relation of 
equality obtains: 
   XY = xy.  (36) 
 According to fig. 5 the magnitude XY of the image of the lateral aberration FD on the 
retina results from the following proportion 
 

  
XY :ρAuge = FD : KO  (37) 

 

 
where ρAuge = XO is the diameter of the observer’s eye and OK = FK the focal length of the 
eye piece. 
 For the telescope denoted by small letters the similar proportion obtains: 
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xy :ρAuge = fd : ko.  (38) 

Insertion of the expressions of XY, xy resulting from these both proportions into the equation 
(36) yields 

 
  

FD
FK

= fd
fk

. (39) 

 By using the relation (35) the equation 

 
  

AP3

ap3 = CV 2 × FK
cv 2× fk

 (40) 

or 

 
  

FK
fk

= AP3 × cv2

ap3 ×CV 2 .  (41) 

is obtained. This relation implies that one and the same object is seen equally distinct through 
two similar Newtonian reflecting telescopes when the cubes of the aperture diameters of their 
large mirrors are as the products of the squares of the focal distances of the large mirrors and 
the focal distances of the eye-pieces, or when the focal distances of the eye-pieces are as the 
cubes of the aperture diameters of the large mirrors divided by the squares of their focal 
distances. 
 
 
 
3. THE MAGNIFICATION OF A NEWTONIAN REFLECTING TELESCOPE 
 
 The visual angle of an object (i.e. the angular size or apparent size) is the angle φ 
which brackets the object when seen. The linear magnification of a telescope is defined as the 
quotient of the size of image on the retina when the object is seen through the telescope and  

when seen by the unaided eye. Therefore, when the object is seen in an angle φF with the 
telescope and in an angle φo without the telescope, the magnification is 

 
  
M =

ϕF

ϕo

.  (42) 

Because of the series 

 
 
α = tanα − 1

3
tan3α + 1

5
tan5α − ...  (43) 

the angle α can be substituted by its tangens when α is very small. Then the magnification is 
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M =

tanϕF

tanϕo

. (44) 
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In fig. 7 an object PR far away is viewed through a Newtonian reflecting telescope, the 
observer sees the image   TF = tf = t*K  at an angle   ϕF = t*OK =R*OP* , and without a 
telescope at an angle    ϕo = RVP = FVT .  Hence, the magnification (42) is 

 
   
M =  t*OK

 RVP
.  (45) 

Since the object PR is far away, the angles are very small. Therefore the angles can be 

approximated by their tangens, i.e. 
   
 t*OK = t*K

KO
and

  
 RVP = FVT = TF

TV
= tf

TV
. 

Because of   t*K = tf  the magnification (44) will be 

 
  
M = TV

KO
.  (46) 

For the sake of simplicity a thin symmetrical ocular lens t*K with the focus f is assumed. 
Because of  KO = fK  magnification M of the Newtonian reflecting telescope will be the 
quotient of the focal distance TV of the concave mirror and the focal distance KO of the 
ocular. 
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4. THE CONDITION FOR THE EQUAL BRIGHTNESS 
 
 The apparent brightness of an observed object is that of its image on the observer’s 
retina. The quantity of light coming from the object and passing through the observer’s eye 
determines the creation of the image on the retina. The felt brightness of the image correlates 
positively with the quantity of light. Accordingly, the quotient given by the quantity of light 
falling on the area divided by the magnitude of this area provides a measure of this area’s 
brightness, i.e. the density of the light on this area. 
 Using two different reflecting telescopes, a particular object elicites the same 
brightness when the images of the object on the retina are equally bright, or in other words, in 
both cases the light density of the images on the retina of the observer are equal. 
 Since the determination of equality of brightness of the same object seen through two 
different telescopes is a non-trivial problem, it is most unfortunate that Newton’s own 
calculations for solving this problem are lost. Robert Smith [1, p. 141 § 348, 349] believes 
this problem is an easily solved one. He writes: 
 

In all sorts of telescopes and double microscopes the apparent brightness of a given object 
is as the square of their linear apertures directly and as the square of their linear amplifications 
inversely. 
 For if the squares of the linear amplifications, that is if the areas of the pictures upon the retina 
were the same, their brightness would be as the quantities of light coming through the areas of the 
apertures, that is as the squares of the linear apertures; and if the apertures or quantities of light 
were the same, the brightness of the pictures would be as their areas inversely or as the squares of 
the linear amplifications inversely. Therefore when neither the apertures nor the amplifications are 
the same, the brigtness is as the square of the linear apertures directly, and as the square of the 
linear amplifications inversely. 
 … Hence in refracting and reflecting telescopes a given object appears equally bright, when their 
linear apertures are as their linear amplifications, … 

 
 No further physical explanation is given by R. Smith in his book. And no amendment 
to his subject is given by A.G. Kästner [2] in his German translation and revision of Robert 
Smith’s book. On the page 185 Kästner touches on the problem of how „to compare the 
brightness of two different telescopes“ but says only: 
 

 „The brightness is as the quantity of light rays divided by the magnitude of the picture and the 
quantity of the light rays falling on both oculars is as the areas.“ 

 
 These arguments are not really conclusive because the felt brightness of a seen object 
depends mainly on the intensity of sensation arising from the very image on the retina of the 
viewed object. Clearly, a change in a telescope’s aperture immediately affects the brightness 
of the whole image produced by the telescope, but as a rule there is a concomitant change in 
the telescope’s magnification, and this renders the given arguments insufficient to determine 
the brightness of the viewed object or of its image on the retina. And this is why the 
brightness of the image caused by the object has to be calculated directly. Johannes Heinrich 
Lambert [3] was the first to solve this problem for a Keplerian telescope. In Pars IV Cap. I p. 
362 – 364 § 804 – 806 he treats the following problem [4, p. 274/5]: 
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§ 804. Let PQ be an eye, GPQ its axis, interposed are two lenses bc, BC, object Gg is viewed, 

and its apparent brightness is sought. Let DP be the distance, at which the eye sees the object 
distinctly, Pp the semidiameter of the aperture of th pupil, Ff the image of the object, GBFbp is the 
path of the rays from point G, which is on the axis, incident at the extremity of the pupil; CB will 
have to be the aperture of th objective lens and bc the aperture of th ocular lens, if all rays that are 
refracted in this way that can enter the pupil, do enter it; so even if both be larger, no more rays 
traverse the pupil. It is otherwise if one of the other aperture were to be smaller, then Pp will not be 
the entire pupil aperture, but only that part which rays fill heading to the eye from point G. Any 
aperture made smaller in any given case will be easy to determine from the principles of dioptrics. 
To us, this ray GBFbp will be the extreme of those which reach the retina from point G, which is 
on the axis. 

§ 805. So that the central brightness can be defined, let Gg be the semidiameter of an element of 
space infinitely small, by drawing gCf, Ff will be its image;  ray gf is incident at γ, where refracted 
it proceeds to P, where again refracted it is incident at point of the retina, q. By extending line γP to 
r, then approximately  qQ = 2

3 Qr , or making   QK = 2
3 QP  and drawing Kq parallel to Pr, so that Qq 

is the image of object Gg depicted on the retina. Finally, dropping a normal Dd and extending Pγ to 
d, d will be the point to where line cf is extended. 

§ 806. Omitting again the quantity of light reflected and dispersed by the eye ad the lenses, we 
assume all the light from space Gg, incident on aperture CB, to be incident also on its image Qq. 
Whence, the brightness of its image will be given, if the quantity is divided by the space Qq. 
Calling this quantity = q, then 

  
q =

ππ ⋅Gg2 ⋅CB2

GB2 .  

But the area of space Qq is   = π ⋅Qq2 ,  therefore taking the brightness at Q = η, then 

  
η =

π ⋅Gg2 ⋅CB2

GB2 ⋅Qq2 .  

 
The examination of J.H. Lambert’s calculation shows that he obtained his results by using the 
infinitesimal calculus. However, Newton could have obtained similar results by means of his 
fluxion calculus. Lambert’s results1 can be applied straightforwardly to the Newtonian 
reflecting telescope because it equals a Keplerian telescope in that its mirror plays the part 
which the objectiv-glass has in the Keplerian telescope. Hence, the equations describing the 

                                                 
1 Some readers perhaps think that there are some missprints in Lambert’s formulas of the quantity q of light 

incident on the retina or the corresponding brightness η because these formulas do not explicitly contain the 
luminous intensity of the viewed star. This alleged mistake is a consequence from Lambert’s standardization. 
See e.g. § 111 in [3].  
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optical properties of a Keplerian telescope also describe the optical properties of a Newtonian 
reflecting telescope. The optical quantities of the Keplerian telescope are equivalent to those 
of the Newtonian reflecting telescope. 
 Now let us consider two reflecting telescops of different magnification. In fig. 8 we 
denote the first by the capitel letters G, B, Q etc., and the second by the corresponding small 
letters g, b, q etc. Let the points F, f be the common focal point of the concave mirror VB and  

the ocular lens H or of the concave mirror vb and the ocular lens h respectively. We now 
consider the case that through both telescopes a particular star, i.e.   GG* = gg*, is seen with 
the same brightness. Therefore, Η =ηor 

 
  

π GG *2 ×VB2

GB2 × QQ *2 = π gg *2 × vb2

gb2 × qq *2  (47) 

is valid. Because of the great distance of the observed star the approximation  GB = gb  is 
admissible. This approximation yields the equation 

 
  

VB2

vb2 = QQ *2

qq *2 .  (48) 

Let ΦF, φF be the visual angles under which you see the viewed star with the two telescopes. 
Let φo be the visual angle without telescope. Then the two relation  
 

  
QQ* = ρeyeΦF  (49) 

 
  
qq* = ρeyeϕF  (50) 

are true (ρeye is the diameter of the eye). These relations yield 

 
  

M
m

= QQ *
qq *

,  (51) 
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Fig. 8 



 14 

with the linear magnifications 
 
M =

ΦF

ϕo

 and 
  
m =

ϕF

ϕo

,  so that finally the equation (48) 

becomes 
 

 
  
VB2

vb2 = M 2

m2  (52) 

or 

 
  
VB
vb

= M
m

.  (53) 

Because of (46) the magnifications are 
 
M = VF

FK
 and

 
m = vf

fk
. Insertion of these expressions 

into (53) yields 

 
  

FK
fk

= VF
VB

vb
vf

.  (54) 

The relation (41) becomes 

 
  

FK
fk

= VB3

VF 2

vf 2

vb3 .  (55) 

Finally, by equating (54) and (55) the relation 

 
  

VB
vb

= VF
vf

4
⎛

⎝
⎜

⎞

⎠
⎟

3

.  (56) 

is obtained. Since the lengths L, l of the Newtonian reflecting telescopes are approximately 
equal the focal distances VF, vf of their concave mirrors, the relation (56) yields Newton’s 
result 

 
  

VB
vb

= L
l

4
⎛

⎝
⎜

⎞

⎠
⎟

3

.  (57) 

So the aperture diameters of reflecting telescopes through which the same object is seen with 
the same brightness and the same distinctness are as the cubes of the fourth roots of the 
lengths of the reflecting telescopes. Furthermore, the equation (53) shows that the aperture 
diameters are as the magnifications. All of this is encompassed by Newton’s statement „If the 
Instrument be made longer or shorter, the aperture must be in proportion as the Cube of the 
square-square Root of the length, and the magnifying as the aperture.“ 
 
 
 
5. ON ROBERT SMITH’S SOLUTION 
 
 It is worth mentioning that Robert Smith [1, p. 141 § 348] started from an unproven 
physical statement when he attempted to derive Newton’s proposition on when through 
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different reflecting telescopes the same object is seen with the same distinctness and the same 
brightness.  

 
Let φF denote the angle Q*OQ under which the far distant object GG* is seen with the 

telescope and let φo denote the angle G*VG under which the object GG* is seen without 
telescope. The following geometrical relations are valid (ρeye is the eye diameter): 
 
 

  
QQ* = ρeye tanϕF  (58) 

   GG* = GV tanϕo.  (59) 
According to Lambert the brightness η of the distant object GG* is 

 
  
η =

π GV 2 tan2ϕo VB2

GB2 ρeye
2 tan2ϕF

.  (60) 

Let δ be the angle BGV under which the aperture radius VB of the telescope is seen from the 
object GG*. Because of 

 
  
cosδ = GV

GB
 (61) 

the expression of the brightness η can be written as 

 
  
η =

π cos2δ tan2ϕo VB2

ρeye
2 tan2ϕF

.  (62) 

If the viewed object is very distant, δ will be very small, i.e.  cosδ = 1.So 

 
  
η = π VB2

ρeye
2

tan2ϕo

tan2ϕF

.  (63) 

The angles φF and φo may be assumed as very small. Then the magnification is 

 
  
M =

ϕF

ϕo

=
tanϕF

tanϕo

.  (64) 

Finally, the expression of the brightness η, with which the distant object GG* is seen, 
becomes 

 
  
η = π

ρeye
2

VB2

M 2 . (65) 

Q
G

B

V
Q*

G*

O

 
Fig. 9 
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Hence, the brightness of the observed object is directly proportional to the square of the 
aperture diameter VB and inversely proportional to the square of the linear magnification M. 
Robert Smith [1, p. 141 § 348] introduced this result ad hoc without convincing justification. 
He used this result as starting point for his deduction of Newton’s statement. The proportion 
(53) is Smith’s Prop. III Corol. 1 [1, § 349 p. 141], i.e. in refracting and reflecting telescopes a 
given object appears equally bright when their aperture diameters are as their linear 
magnifications. 
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